Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 20(8): 1012-1022, 2019 08.
Article in English | MEDLINE | ID: mdl-31263276

ABSTRACT

The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the ß-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell-mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell-mediated resistance to metastasis.


Subject(s)
Killer Cells, Natural/immunology , Lectins, C-Type/metabolism , Macrophages/immunology , Membrane Proteins/metabolism , Neoplasm Metastasis/immunology , Neoplasms/immunology , Animals , Cell Differentiation/immunology , Cell Lineage , Dexamethasone/pharmacology , Humans , Interleukin-4/metabolism , Lymphocyte Activation/immunology , Macrophage Activation/immunology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Neoplasm Metastasis/prevention & control , Neoplasms/pathology
2.
Nature ; 623(7987): 616-624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938773

ABSTRACT

Rheumatoid arthritis is a prototypical autoimmune disease that causes joint inflammation and destruction1. There is currently no cure for rheumatoid arthritis, and the effectiveness of treatments varies across patients, suggesting an undefined pathogenic diversity1,2. Here, to deconstruct the cell states and pathways that characterize this pathogenic heterogeneity, we profiled the full spectrum of cells in inflamed synovium from patients with rheumatoid arthritis. We used multi-modal single-cell RNA-sequencing and surface protein data coupled with histology of synovial tissue from 79 donors to build single-cell atlas of rheumatoid arthritis synovial tissue that includes more than 314,000 cells. We stratified tissues into six groups, referred to as cell-type abundance phenotypes (CTAPs), each characterized by selectively enriched cell states. These CTAPs demonstrate the diversity of synovial inflammation in rheumatoid arthritis, ranging from samples enriched for T and B cells to those largely lacking lymphocytes. Disease-relevant cell states, cytokines, risk genes, histology and serology metrics are associated with particular CTAPs. CTAPs are dynamic and can predict treatment response, highlighting the clinical utility of classifying rheumatoid arthritis synovial phenotypes. This comprehensive atlas and molecular, tissue-based stratification of rheumatoid arthritis synovial tissue reveal new insights into rheumatoid arthritis pathology and heterogeneity that could inform novel targeted treatments.


Subject(s)
Arthritis, Rheumatoid , Humans , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Cytokines/metabolism , Inflammation/complications , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Synovial Membrane/pathology , T-Lymphocytes/immunology , B-Lymphocytes/immunology , Genetic Predisposition to Disease/genetics , Phenotype , Single-Cell Gene Expression Analysis
3.
Curr Issues Mol Biol ; 46(7): 7486-7504, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39057085

ABSTRACT

Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.

4.
Osteoarthritis Cartilage ; 32(2): 166-176, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984558

ABSTRACT

OBJECTIVES: Osteoarthritis (OA) is a debilitating and heterogeneous condition, characterized by various levels of articular cartilage degradation, osteophytes formation, and synovial inflammation. Multiple evidences suggest that synovitis may appear early in the disease development and correlates with disease severity and pain, therefore representing a relevant therapeutic target. In a typical synovitis-driven joint disease, namely rheumatoid arthritis (RA), several pathotypes have been described by our group and associated with clinical phenotypes, disease progression, and response to therapy. However, whether these pathotypes can be also observed in the OA synovium is currently unknown. METHODS: Here, using histological approaches combined with semi-quantitative scoring and quantitative digital image analyses, we comparatively characterize the immune cell infiltration in a large cohort of OA and RA synovial tissue samples collected at the time of total joint replacement. RESULTS: We demonstrate that OA synovium can be categorized also into three pathotypes and characterized by disease- and stage-specific features. Moreover, we revealed that pathotypes specifically reflect distinct levels of peripheral inflammation. CONCLUSIONS: In this study, we provide a novel and relevant pathological classification of OA synovial inflammation. Further studies investigating synovial molecular pathology in OA may contribute to the development of disease-modifying therapies.


Subject(s)
Arthritis, Rheumatoid , Osteoarthritis , Synovitis , Humans , Osteoarthritis/metabolism , Arthritis, Rheumatoid/metabolism , Synovial Membrane/metabolism , Synovitis/pathology , Inflammation/metabolism
5.
PLoS Biol ; 19(4): e3001199, 2021 04.
Article in English | MEDLINE | ID: mdl-33901179

ABSTRACT

Programmed cell death protein 1 (PD-1) is expressed on T cells upon T cell receptor (TCR) stimulation. PD-1 ligand 1 (PD-L1) is expressed in most tumor environments, and its binding to PD-1 on T cells drives them to apoptosis or into a regulatory phenotype. The fact that PD-L1 itself is also expressed on T cells upon activation has been largely neglected. Here, we demonstrate that PD-L1 ligation on human CD25-depleted CD4+ T cells, combined with CD3/TCR stimulation, induces their conversion into highly suppressive T cells. Furthermore, this effect was most prominent in memory (CD45RA-CD45RO+) T cells. PD-L1 engagement on T cells resulted in reduced ERK phosphorylation and decreased AKT/mTOR/S6 signaling. Importantly, T cells from rheumatoid arthritis patients exhibited high basal levels of phosphorylated ERK and following PD-L1 cross-linking both ERK signaling and the AKT/mTOR/S6 pathway failed to be down modulated, making them refractory to the acquisition of a regulatory phenotype. Altogether, our results suggest that PD-L1 signaling on memory T cells could play an important role in resolving inflammatory responses; maintaining a tolerogenic environment and its failure could contribute to ongoing autoimmunity.


Subject(s)
B7-H1 Antigen/metabolism , CD4-Positive T-Lymphocytes/physiology , T-Lymphocytes, Regulatory/physiology , B7-H1 Antigen/physiology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/physiology , Cell Transdifferentiation/genetics , Cell Transdifferentiation/immunology , Cohort Studies , Humans , Immune Tolerance/genetics , Immune Tolerance/immunology , Immunologic Memory/physiology , Leukocyte Common Antigens/metabolism , Phenotype , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/physiology , Signal Transduction/physiology , T-Lymphocytes, Regulatory/metabolism
6.
Lancet ; 397(10271): 305-317, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33485455

ABSTRACT

BACKGROUND: Although targeted biological treatments have transformed the outlook for patients with rheumatoid arthritis, 40% of patients show poor clinical response, which is mechanistically still unexplained. Because more than 50% of patients with rheumatoid arthritis have low or absent CD20 B cells-the target for rituximab-in the main disease tissue (joint synovium), we hypothesised that, in these patients, the IL-6 receptor inhibitor tocilizumab would be more effective. The aim of this trial was to compare the effect of tocilizumab with rituximab in patients with rheumatoid arthritis who had an inadequate response to anti-tumour necrosis factor (TNF) stratified for synovial B-cell status. METHODS: This study was a 48-week, biopsy-driven, multicentre, open-label, phase 4 randomised controlled trial (rituximab vs tocilizumab in anti-TNF inadequate responder patients with rheumatoid arthritis; R4RA) done in 19 centres across five European countries (the UK, Belgium, Italy, Portugal, and Spain). Patients aged 18 years or older who fulfilled the 2010 American College of Rheumatology and European League Against Rheumatism classification criteria for rheumatoid arthritis and were eligible for treatment with rituximab therapy according to UK National Institute for Health and Care Excellence guidelines were eligible for inclusion in the trial. To inform balanced stratification, following a baseline synovial biopsy, patients were classified histologically as B-cell poor or rich. Patients were then randomly assigned (1:1) centrally in block sizes of six and four to receive two 1000 mg rituximab infusions at an interval of 2 weeks (rituximab group) or 8 mg/kg tocilizumab infusions at 4-week intervals (tocilizumab group). To enhance the accuracy of the stratification of B-cell poor and B-cell rich patients, baseline synovial biopsies from all participants were subjected to RNA sequencing and reclassified by B-cell molecular signature. The study was powered to test the superiority of tocilizumab over rituximab in the B-cell poor population at 16 weeks. The primary endpoint was defined as a 50% improvement in Clinical Disease Activity Index (CDAI50%) from baseline. The trial is registered on the ISRCTN database, ISRCTN97443826, and EudraCT, 2012-002535-28. FINDINGS: Between Feb 28, 2013, and Jan 17, 2019, 164 patients were classified histologically and were randomly assigned to the rituximab group (83 [51%]) or the tocilizumab group (81 [49%]). In patients histologically classified as B-cell poor, there was no statistically significant difference in CDAI50% between the rituximab group (17 [45%] of 38 patients) and the tocilizumab group (23 [56%] of 41 patients; difference 11% [95% CI -11 to 33], p=0·31). However, in the synovial biopsies classified as B-cell poor with RNA sequencing the tocilizumab group had a significantly higher response rate compared with the rituximab group for CDAI50% (rituximab group 12 [36%] of 33 patients vs tocilizumab group 20 [63%] of 32 patients; difference 26% [2 to 50], p=0·035). Occurrence of adverse events (rituximab group 76 [70%] of 108 patients vs tocilizumab group 94 [80%] of 117 patients; difference 10% [-1 to 21) and serious adverse events (rituximab group 8 [7%] of 108 vs tocilizumab group 12 [10%] of 117; difference 3% [-5 to 10]) were not significantly different between treatment groups. INTERPRETATION: The results suggest that RNA sequencing-based stratification of rheumatoid arthritis synovial tissue showed stronger associations with clinical responses compared with histopathological classification. Additionally, for patients with low or absent B-cell lineage expression signature in synovial tissue tocilizumab is more effective than rituximab. Replication of the results and validation of the RNA sequencing-based classification in independent cohorts is required before making treatment recommendations for clinical practice. FUNDING: Efficacy and Mechanism Evaluation programme from the UK National Institute for Health Research.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Rituximab/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Aged , Arthritis, Rheumatoid/pathology , Biopsy , Double-Blind Method , Europe , Female , Humans , Male , Middle Aged
7.
Ann Rheum Dis ; 80(5): 591-597, 2021 05.
Article in English | MEDLINE | ID: mdl-33243781

ABSTRACT

OBJECTIVES: To determine the relationship between synovial versus skin transcriptional/histological profiles in patients with active psoriatic arthritis (PsA) and explore mechanistic links between diseased tissue pathology and clinical outcomes. METHODS: Twenty-seven active PsA patients were enrolled in an observational/open-label study and underwent biopsies of synovium and paired lesional/non-lesional skin before starting anti-tumour necrosis factor (TNF) (if biologic-naïve) or ustekinumab (if anti-TNF inadequate responders). Molecular analysis of 80-inflammation-related genes and protein levels for interleukin (IL)-23p40/IL-23p19/IL-23R were assessed by real-time-PCR and immunohistochemistry, respectively. RESULTS: At baseline, all patients had persistent active disease as per inclusion criteria. At primary end-point (16-weeks post-treatment), skin responses favoured ustekinumab, while joint responses favoured anti-TNF therapies. Principal component analysis revealed distinct clustering of synovial tissue gene expression away from the matched skin. While IL12B, IL23A and IL23R were homogeneously expressed in lesional skin, their expression was extremely heterogeneous in paired synovial tissues. Here, IL-23 transcriptomic/protein expression was strongly linked to patients with high-grade synovitis who, however, were not distinguishable by conventional clinimetric measures. CONCLUSIONS: PsA synovial tissue shows a heterogeneous IL-23 axis profile when compared with matched skin. Synovial molecular pathology may help to identify among clinically indistinguishable patients those with a greater probability of responding to IL-23 inhibitors.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Psoriatic/drug therapy , Interleukin-23/antagonists & inhibitors , Skin/metabolism , Synovial Membrane/metabolism , Adult , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/pathology , Female , Gene Expression Profiling , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-23/metabolism , Male , Middle Aged , Principal Component Analysis , Synovitis/genetics , Treatment Outcome , Tumor Necrosis Factor Inhibitors/therapeutic use , Ustekinumab/therapeutic use
8.
Clin Exp Rheumatol ; 39(1): 132-138, 2021.
Article in English | MEDLINE | ID: mdl-32573415

ABSTRACT

OBJECTIVES: Growth arrest-specific 6 (Gas6) and its receptors have been shown to play a crucial role in the homeostasis of the innate immune system by regulating apoptosis and inflammation. We aimed to verify whether an impairment of this system is associated with systemic lupus erythematosus (SLE) disease activity and with lupus nephritis (LN). METHODS: Plasma Gas6 and the soluble cleaved form of the receptors MerTK (sMer) and Axl (sAxl) concentrations were measured in n=59 SLE patients (n=44 with nephritis, 75%) and analysed in relationship to clinical and laboratory data. RESULTS: Patients with LN were characterised by higher Gas6 (19.0 ng/mL [16.8-24.5] vs. 16.5 ng/mL [13.89-18.91]; p=0.03) and sAxl plasma levels than those without LN (31.36 ng/mL [25.1-41.4] vs. 20.2 ng/mL [15.6-30.7]; p=0.03); conversely sMer plasma concentrations were similar between groups. All the three biomarkers studied were directly correlated to creatinine and daily proteinuria, being inversely related to creatinine clearance. 39 patients had a proteinuria level of <0.5 mg/day, 14 between 0.5 and 3.5 mg/day and 5 had ≥3.5 g/day; Gas6, sAxl and sMer plasma concentrations significantly increased for increasing degree of proteinuria (test for trend p=0.0002; p=0.02; p=0.009, respectively).These correlations were confirmed in multiple linear regression analysis models accounting for gender, age, disease duration and concomitant treatment. CONCLUSIONS: Plasma Gas6, sAxl and sMer concentrations are associated with the severity of LN in patients affected by SLE. The excess cleavage of TAM receptors might contribute to LN pathogenesis.


Subject(s)
Lupus Nephritis , Receptor Protein-Tyrosine Kinases , Biomarkers , Humans , Intercellular Signaling Peptides and Proteins , Lupus Nephritis/diagnosis , Plasma , Proto-Oncogene Proteins
9.
Rheumatology (Oxford) ; 59(4): 828-838, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31504934

ABSTRACT

OBJECTIVES: IL-36 agonists are pro-inflammatory cytokines involved in the pathogenesis of psoriasis. However, their role in the pathogenesis of arthritis and treatment response to DMARDs in PsA remains uncertain. Therefore, we investigated the IL-36 axis in the synovium of early, treatment-naïve PsA, and for comparison RA patients, pre- and post-DMARDs therapy. METHODS: Synovial tissues were collected by US-guided biopsy from patients with early, treatment-naïve PsA and RA at baseline and 6 months after DMARDs therapy. IL-36 family members were investigated in synovium by RNA sequencing and immunohistochemistry, and expression levels correlated with DMARDs treatment response ex vivo. Additionally, DMARDs effects on IL-36 were investigated in vitro in fibroblast-like synoviocytes. RESULTS: PsA synovium displayed a reduced expression of IL-36 antagonists, while IL-36 agonists were comparable between PsA and RA. Additionally, neutrophil-related molecules, which drive a higher activation of the IL-36 pathway, were upregulated in PsA compared with RA. At baseline, the synovial expression of IL-36α was significantly higher in PsA non-responders to DMARDs treatment, with the differential expression being sustained at 6 months post-treatment. In vitro, primary PsA-derived fibroblasts were more responsive to IL-36 stimulation compared with RA and, importantly, DMARDs treatment increased IL-36 expression in PsA fibroblasts. CONCLUSION: The impaired balance between IL-36 agonists-antagonists described herein for the first time in PsA synovium and the decreased sensitivity to DMARDs in vitro may explain the apparent lower efficacy of DMARDs in PsA compared with RA. Exogenous replacement of IL-36 antagonists may be a novel promising therapeutic target for PsA patients.


Subject(s)
Arthritis, Psoriatic/immunology , Gene Expression , Inflammation/immunology , Synovial Membrane/immunology , Synoviocytes/immunology , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Biopsy , Humans , In Vitro Techniques , Inflammation/genetics , Inflammation/metabolism , Interleukin-1/genetics , Interleukin-1/immunology , Interleukin-1/metabolism , Interleukins/genetics , Interleukins/immunology , Interleukins/metabolism , RNA, Messenger/metabolism , Synovial Membrane/drug effects , Synovial Membrane/metabolism , Synoviocytes/drug effects , Synoviocytes/metabolism
10.
Clin Exp Rheumatol ; 38(2): 343-349, 2020.
Article in English | MEDLINE | ID: mdl-31573472

ABSTRACT

Vitamin D is a pleiotropic molecule with a well-characterised immunomodulatory activity in vitro; however, its potential clinical application in autoimmune conditions has yet to be clarified. Several authors have investigated the use of vitamin D as a disease-modifying anti-rheumatic drug (DMARD) in rheumatoid arthritis (RA), obtaining divergent conclusions. This systematic review summarises and critically analyses the findings of papers assessing the impact of vitamin D supplementation on pain relief, disease activity, functional status and flare rate. We conclude that the correction of hypovitaminosis D may have a beneficial effect on pain perception; moreover, the achievement of an adequate plasma vitamin D concentration obtained with high-dose regimens might evoke immunomodulatory activities of vitamin D and favourably impact on disease control. Nevertheless, the current evidence is still not strong enough to support the use of cholecalciferol as a DMARD in RA, and further studies are required to clarify this issue.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Cholecalciferol/therapeutic use , Vitamin D Deficiency , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Cholecalciferol/deficiency , Humans , Vitamin D Deficiency/complications
11.
Ann Rheum Dis ; 78(12): 1642-1652, 2019 12.
Article in English | MEDLINE | ID: mdl-31582377

ABSTRACT

OBJECTIVE: To establish whether synovial pathobiology improves current clinical classification and prognostic algorithms in early inflammatory arthritis and identify predictors of subsequent biological therapy requirement. METHODS: 200 treatment-naïve patients with early arthritis were classified as fulfilling RA1987 American College of Rheumatology (ACR) criteria (RA1987) or as undifferentiated arthritis (UA) and patients with UA further classified into those fulfilling RA2010 ACR/European League Against Rheumatism (EULAR) criteria. Treatment requirements at 12 months (Conventional Synthetic Disease Modifying Antirheumatic Drugs (csDMARDs) vs biologics vs no-csDMARDs treatment) were determined. Synovial tissue was retrieved by minimally invasive, ultrasound-guided biopsy and underwent processing for immunohistochemical (IHC) and molecular characterisation. Samples were analysed for macrophage, plasma-cell and B-cells and T-cells markers, pathotype classification (lympho-myeloid, diffuse-myeloid or pauci-immune) by IHC and gene expression profiling by Nanostring. RESULTS: 128/200 patients were classified as RA1987, 25 as RA2010 and 47 as UA. Patients classified as RA1987 criteria had significantly higher levels of disease activity, histological synovitis, degree of immune cell infiltration and differential upregulation of genes involved in B and T cell activation/function compared with RA2010 or UA, which shared similar clinical and pathobiological features. At 12-month follow-up, a significantly higher proportion of patients classified as lympho-myeloid pathotype required biological therapy. Performance of a clinical prediction model for biological therapy requirement was improved by the integration of synovial pathobiological markers from 78.8% to 89%-90%. CONCLUSION: The capacity to refine early clinical classification criteria through synovial pathobiological markers offers the potential to predict disease outcome and stratify therapeutic intervention to patients most in need.


Subject(s)
Algorithms , Arthritis, Rheumatoid/therapy , Biological Therapy/methods , Synovial Membrane/diagnostic imaging , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/classification , Arthritis, Rheumatoid/diagnosis , Disease Progression , Female , Humans , Image-Guided Biopsy , Male , Middle Aged , Prognosis , Prospective Studies , Severity of Illness Index , Synovial Membrane/metabolism , Ultrasonography
12.
Ann Rheum Dis ; 78(11): 1505-1516, 2019 11.
Article in English | MEDLINE | ID: mdl-31371305

ABSTRACT

OBJECTIVE: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that mainly targets joints. Monocytes and macrophages are critical in RA pathogenesis and contribute to inflammatory lesions. These extremely plastic cells respond to extracellular signals which cause epigenomic changes that define their pathogenic phenotype. Here, we interrogated how DNA methylation alterations in RA monocytes are determined by extracellular signals. METHODS: High-throughput DNA methylation analyses of patients with RA and controls and in vitro cytokine stimulation were used to investigate the underlying mechanisms behind DNA methylation alterations in RA as well as their relationship with clinical parameters, including RA disease activity. RESULTS: The DNA methylomes of peripheral blood monocytes displayed significant changes and increased variability in patients with RA with respect to healthy controls. Changes in the monocyte methylome correlate with DAS28, in which high-activity patients are divergent from healthy controls in contrast to remission patients whose methylome is virtually identical to healthy controls. Indeed, the notion of a changing monocyte methylome is supported after comparing the profiles of same individuals at different stages of activity. We show how these changes are mediated by an increase in disease activity-associated cytokines, such as tumour necrosis factor alpha and interferons, as they recapitulate the DNA methylation changes observed in patients in vitro. CONCLUSION: We demonstrate a direct link between RA disease activity and the monocyte methylome through the action of inflammation-associated cytokines. Finally, we have obtained a DNA methylation-based mathematical formula that predicts inflammation-mediated disease activity for RA and other chronic immune-mediated inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/genetics , Cytokines/blood , Epigenome/immunology , Inflammation Mediators/blood , Biomarkers/blood , DNA Methylation/immunology , Humans , Leukocytes, Mononuclear/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/blood
13.
J Autoimmun ; 105: 102297, 2019 12.
Article in English | MEDLINE | ID: mdl-31277965

ABSTRACT

The mechanisms underlying the transition of rheumatoid arthritis (RA) systemic autoimmunity to the joints remain largely unknown. Here, we demonstrate that macrophages in the secondary lymphoid organs (SLOs) and synovial ectopic lymphoid-like structures (ELSs) express peptidylarginine deiminase 4 (PAD4) in murine collagen induced arthritis (CIA) and synovial biopsies from RA patients. Moreover, peptidyl citrulline colocalized with macrophages in SLOs and ELSs, and depletion of macrophages in CIA decreased lymphoid tissue citrullination and serum anti-citrullinated protein/peptide antibody (ACPA) levels. Furthermore, PAD was released from activated murine and RA synovial tissue and fluid (SF) macrophages which functionally deiminated extracellular proteins/peptides in vitro. Additionally, activated murine and SF macrophages displayed macrophage extracellular trap formation (METosis) and release of intracellular citrullinated histones. Moreover, presentation of citrullinated proteins induced ACPA production in vitro. Thus, lymphoid tissue macrophages contribute to self-antigen citrullination and ACPA production, indicating that their selective targeting would potentially ameliorate citrullination-dependent autoimmune disorders.


Subject(s)
Arthritis, Experimental/immunology , Autoantibodies/immunology , Autoimmune Diseases/immunology , Citrullination/immunology , Extracellular Traps/immunology , Macrophages/immunology , Protein-Arginine Deiminase Type 4/immunology , Animals , Antibody Formation/immunology , Arthritis, Rheumatoid/immunology , Autoantigens/immunology , Autoimmunity/immunology , Citrulline/immunology , Histones/immunology , Male , Mice , Mice, Inbred DBA , Synovial Fluid/immunology , Synovial Membrane/immunology
14.
Int J Mol Sci ; 20(6)2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30871134

ABSTRACT

The interleukin (IL)-1 family of cytokines is composed of 11 members, including the most recently discovered IL-36α, ß, γ, IL-37, and IL-38. Similar to IL-1, IL-36 cytokines are initiators and amplifiers of inflammation, whereas both IL-37 and IL-38 display anti-inflammatory activities. A few studies have outlined the role played by these cytokines in several inflammatory diseases. For instance, IL-36 agonists seem to be relevant for the pathogenesis of skin psoriasis whereas, despite being expressed within the synovial tissue, their silencing or overexpression do not critically influence the course of arthritis in mice. In this review, we will focus on the state of the art of the molecular features and biological roles of IL-36, IL-37, and IL-38 in representative skin- and joint-related inflammatory diseases, namely psoriasis, rheumatoid arthritis, and psoriatic arthritis. We will then offer an overview of the therapeutic potential of targeting the IL-36 axis in these diseases, either by blocking the proinflammatory agonists or enhancing the physiologic inhibitory feedback on the inflammation mediated by the antagonists IL-37 and IL-38.


Subject(s)
Arthritis, Rheumatoid/immunology , Inflammation/immunology , Interleukins/immunology , Joints/immunology , Skin/immunology , Animals , Arthritis, Psoriatic/immunology , Humans , Psoriasis/immunology , Synovial Membrane/immunology
15.
Ann Rheum Dis ; 77(12): 1773-1781, 2018 12.
Article in English | MEDLINE | ID: mdl-30127058

ABSTRACT

OBJECTIVES: Mast cells (MCs) are involved in the pathogenesis of rheumatoid arthritis (RA). However, their contribution remains controversial. To establish their role in RA, we analysed their presence in the synovium of treatment-naïve patients with early RA and their association and functional relationship with histological features of synovitis. METHODS: Synovial tissue was obtained by ultrasound-guided biopsy from treatment-naïve patients with early RA (n=99). Immune cells (CD3/CD20/CD138/CD68) and their relationship with CD117+MCs in synovial tissue were analysed by immunohistochemistry (IHC) and immunofluorescence (IF). The functional involvement of MCs in ectopic lymphoid structures (ELS) was investigated in vitro, by coculturing MCs with naïve B cells and anticitrullinated protein antibodies (ACPA)-producing B cell clones, and in vivo in interleukin-27 receptor alpha (IL27ra)-deficient and control mice during antigen-induced arthritis (AIA). RESULTS: High synovial MC counts are associated with local and systemic inflammation, autoantibody positivity and high disease activity. IHC/IF showed that MCs reside at the outer border of lymphoid aggregates. Furthermore, human MCs promote the activation and differentiation of naïve B cells and induce the production of ACPA, mainly via contact-dependent interactions. In AIA, synovial MC numbers increase in IL27ra deficient mice, in association with ELS and worse disease activity. CONCLUSIONS: Synovial MCs identify early RA patients with a severe clinical form of synovitis characterised by the presence of ELS.


Subject(s)
Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , B-Lymphocytes/immunology , Mast Cells/immunology , Synovitis/immunology , Animals , Arthritis, Experimental/immunology , Female , Humans , Male , Mice , Tertiary Lymphoid Structures/immunology
16.
Int J Mol Sci ; 19(2)2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29425183

ABSTRACT

Psoriasis is a chronic systemic inflammatory disease causing erythematosus and scaly skin plaques; up to 30% of patients with psoriasis develop Psoriatic Arthritis (PsA), which is characterised by inflammation and progressive damage of the peripheral joints and/or the spine and/or the entheses. The pathogenic mechanisms driving the skin disorder in psoriasis and the joint disease in PsA are sustained by the activation of inflammatory pathways that can be overlapping, but also, at least partially, distinct. Cytokines members of the IL-23/IL-17 family, critical in the development of autoimmunity, are abundantly expressed within the cutaneous lesions but also seem to be involved in chronic inflammation and damage of the synovium though, as it will be here discussed, not in all patients. In this review, we will focus on the state of the art of the molecular features of psoriatic skin and joints, focusing on the specific role of the IL-23/IL-17 pathway in each of these anatomical districts. We will then offer an overview of the approved and in-development biologics targeting this axis, emphasising how the availability of the "target" in the diseased tissues could provide a plausible explanation for the heterogeneous clinical efficacy of these drugs, thus opening future perspective of personalised therapies.


Subject(s)
Arthritis, Psoriatic/metabolism , Interleukin-17/metabolism , Interleukin-23/metabolism , Animals , Arthritis, Psoriatic/drug therapy , Biological Products/therapeutic use , Humans , Joints/metabolism , Joints/pathology , Precision Medicine/methods , Skin/metabolism , Skin/pathology
17.
Rheumatology (Oxford) ; 55(8): 1374-85, 2016 08.
Article in English | MEDLINE | ID: mdl-27074807

ABSTRACT

OBJECTIVES: Autophagy may represent a functional processing event that creates a substrate for autoreactivity. In particular, autophagy may play a role in the pathogenesis of RA, since autophagy is a key cellular event involved in the generation of citrullinated peptides, with consequent breakage of tolerance. Thus, in RA, autophagy may be the common feature in several situations (including smoking, joint injury and infection) that may drive the adaptive responses to citrullinated self-proteins. The aim of this study was the analysis, in vitro, of the role of autophagy in the generation of citrullinated peptides and, in vivo, of the relationship between autophagy and the production of anti-CCP antibodies (Abs). METHODS: For autophagy induction, fibroblast-like synoviocytes, primary fibroblasts and monocytes were stimulated with tunicamycin or rapamycin. Peptidyl arginine deiminase activity was tested by enzyme-linked immunosorbent assay, and protein citrullination was evaluated by western blotting. The main citrullinated RA candidate antigens, vimentin, α-enolase and filaggrin, were demonstrated by immunoprecipitation. The relationship between autophagy and anti-CCP Abs was analysed in 30 early-active RA patients. RESULTS: Our results demonstrated in vitro a role for autophagy in the citrullination process. Cells treated with tunicamycin or rapamycin showed peptidyl arginine deiminase 4 activation, with consequent protein citrullination. Immunoblotting and immunoprecipitation experiments, using specific Abs, identified the main citrullinated proteins: vimentin, α-enolase and filaggrin. In vivo, a significant association between levels of autophagy and anti-CCP Abs was observed in treatment-naïve early-active RA patients. CONCLUSION: These findings support the view that the processing of proteins in autophagy generates citrullinated peptides recognized by the immune system in RA.


Subject(s)
Antibodies/metabolism , Arthritis, Rheumatoid/immunology , Autophagy/immunology , Peptides, Cyclic/biosynthesis , Synoviocytes/immunology , Cells, Cultured , Citrulline/immunology , Female , Fibroblasts/immunology , Filaggrin Proteins , Humans , Hydrolases/metabolism , Intermediate Filament Proteins/metabolism , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Osteoarthritis/immunology , Peptides, Cyclic/immunology , Phosphopyruvate Hydratase/metabolism , Protein-Arginine Deiminase Type 4 , Protein-Arginine Deiminases , Vimentin/metabolism
18.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727279

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disorder which can lead to long-term joint damage and significantly reduced quality of life if not promptly diagnosed and adequately treated. Despite significant advances in treatment, about 40% of patients with RA do not respond to individual pharmacological agents and up to 20% do not respond to any of the available medications. To address this large unmet clinical need, several recent studies have focussed on an in-depth histological and molecular characterisation of the synovial tissue to drive the application of precision medicine to RA. Currently, RA patients are clinically divided into "seropositive" or "seronegative" RA, depending on the presence of routinely checked antibodies. Recent work has suggested that over the last two decades, long-term outcomes have improved significantly in seropositive RA but not in seronegative RA. Here, we present up-to-date differences in epidemiology, clinical features, and serological biomarkers in seronegative versus seropositive RA and discuss how histological and molecular synovial signatures, revealed by recent large synovial biopsy-based clinical trials, may be exploited to refine the classification of RA patients, especially in the seronegative group.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Phenotype , Synovial Membrane , Humans , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/immunology , Biomarkers/blood , Synovial Membrane/pathology
19.
Joint Bone Spine ; 91(3): 105692, 2024 May.
Article in English | MEDLINE | ID: mdl-38246575

ABSTRACT

Joint diseases affect hundreds of millions of people worldwide, and their prevalence is constantly increasing. To date, despite recent advances in the development of therapeutic options for most rheumatic conditions, a significant proportion of patients still lack efficient disease management, considerably impacting their quality of life. Through the spectrum of rheumatoid arthritis (RA), psoriatic arthritis (PsA), and osteoarthritis (OA) as quintessential and common rheumatic diseases, this review first provides an overview of their epidemiological and clinical features before exploring how the better definition of clinical phenotypes has helped their clinical management. It then discusses the recent progress in understanding the diversity of endotypes underlying disease phenotypes. Finally, this review highlights the current challenges of implementing molecular endotypes towards the personalized management of RA, PsA and OA patients in the future.


Subject(s)
Arthritis, Psoriatic , Osteoarthritis , Phenotype , Precision Medicine , Humans , Precision Medicine/methods , Osteoarthritis/therapy , Osteoarthritis/genetics , Arthritis, Psoriatic/genetics , Arthritis, Psoriatic/diagnosis , Arthritis, Psoriatic/therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/classification , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/therapy , Chronic Disease , Male , Female , Joint Diseases/genetics , Joint Diseases/diagnosis , Joint Diseases/therapy
20.
Arthritis Rheumatol ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39041647

ABSTRACT

OBJECTIVE: This study was undertaken to establish the potential therapeutic profile of neutrophil-derived extracellular vesicles (EVs) in experimental inflammatory arthritis and associate pharmacological activity with specific EV components, focussing on microRNAs. METHODS: Neutrophil EVs were administered intra-articularly through a prophylactic or therapeutic protocol to male C57BL/6 mice undergoing serum-transfer induced inflammatory arthritis. Transcriptomic analysis of knees was performed on joints following EV administration, Naïve and arthritic mice (untreated), n=4/group, and EV-treated diseased mice (intra-articular administration) with contralateral (vehicle-treated) n=8/group. Comparison of healthy donor and rheumatoid arthritis (RA) patient neutrophil EVs was performed. RESULTS: EVs afforded cartilage protection with an increase in Collagen-II and reduced Collagen-X expression within the joint. To gain mechanistic insights, RNA sequencing of the arthritic joints was conducted. A total of 5,231 genes were differentially expressed (P<0.05), with 257 unique to EV treatment. EVs affected key regenerative pathways involved in joint development, including Wnt and Notch signalling. This wealth of genomic alteration prompted to identify microRNAs in EVs, 10 of which are associated with RA. As a proof-of-concept, we focused on miR-455-3p, which was detected in both healthy donor and RA EVs. EV addition to chondrocyte cultures elevated miR-455-3p and exerted anti-catabolic effects upon IL-1ß stimulation; these effects were blocked by actinomycin or miR-455-3p antagomir. CONCLUSION: Neutrophils from RA patients yielded EVs with composition, efficacy and miR-455-3p content similar to those of healthy volunteers, suggesting that neutrophil EVs could be developed as an autologous treatment to protect and repair joint tissue of patients affected by inflammatory arthritides.

SELECTION OF CITATIONS
SEARCH DETAIL