Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38366781

ABSTRACT

Mutation is the ultimate source of genetic variation, the bedrock of evolution. Yet, predicting the consequences of new mutations remains a challenge in biology. Gene expression provides a potential link between a genotype and its phenotype. But the variation in gene expression created by de novo mutation and the fitness consequences of mutational changes to expression remain relatively unexplored. Here, we investigate the effects of >2,600 de novo mutations on gene expression across the transcriptome of 28 mutation accumulation lines derived from 2 independent wild-type genotypes of the green algae Chlamydomonas reinhardtii. We observed that the amount of genetic variance in gene expression created by mutation (Vm) was similar to the variance that mutation generates in typical polygenic phenotypic traits and approximately 15-fold the variance seen in the limited species where Vm in gene expression has been estimated. Despite the clear effect of mutation on expression, we did not observe a simple additive effect of mutation on expression change, with no linear correlation between the total expression change and mutation count of individual MA lines. We therefore inferred the distribution of expression effects of new mutations to connect the number of mutations to the number of differentially expressed genes (DEGs). Our inferred DEE is highly L-shaped with 95% of mutations causing 0-1 DEG while the remaining 5% are spread over a long tail of large effect mutations that cause multiple genes to change expression. The distribution is consistent with many cis-acting mutation targets that affect the expression of only 1 gene and a large target of trans-acting targets that have the potential to affect tens or hundreds of genes. Further evidence for cis-acting mutations can be seen in the overabundance of mutations in or near differentially expressed genes. Supporting evidence for trans-acting mutations comes from a 15:1 ratio of DEGs to mutations and the clusters of DEGs in the co-expression network, indicative of shared regulatory architecture. Lastly, we show that there is a negative correlation with the extent of expression divergence from the ancestor and fitness, providing direct evidence of the deleterious effects of perturbing gene expression.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Mutation , Mutation Accumulation , Genotype , Gene Expression
2.
PLoS Genet ; 18(6): e1009840, 2022 06.
Article in English | MEDLINE | ID: mdl-35704655

ABSTRACT

The distribution of fitness effects (DFE) for new mutations is fundamental for many aspects of population and quantitative genetics. In this study, we have inferred the DFE in the single-celled alga Chlamydomonas reinhardtii by estimating changes in the frequencies of 254 spontaneous mutations under experimental evolution and equating the frequency changes of linked mutations with their selection coefficients. We generated seven populations of recombinant haplotypes by crossing seven independently derived mutation accumulation lines carrying an average of 36 mutations in the haploid state to a mutation-free strain of the same genotype. We then allowed the populations to evolve under natural selection in the laboratory by serial transfer in liquid culture. We observed substantial and repeatable changes in the frequencies of many groups of linked mutations, and, surprisingly, as many mutations were observed to increase as decrease in frequency. Mutation frequencies were highly repeatable among replicates, suggesting that selection was the cause of the observed allele frequency changes. We developed a Bayesian Monte Carlo Markov Chain method to infer the DFE. This computes the likelihood of the observed distribution of changes of frequency, and obtains the posterior distribution of the selective effects of individual mutations, while assuming a two-sided gamma distribution of effects. We infer that the DFE is a highly leptokurtic distribution, and that approximately equal proportions of mutations have positive and negative effects on fitness. This result is consistent with what we have observed in previous work on a different C. reinhardtii strain, and suggests that a high fraction of new spontaneously arisen mutations are advantageous in a simple laboratory environment.


Subject(s)
Chlamydomonas reinhardtii , Bayes Theorem , Chlamydomonas reinhardtii/genetics , Genetic Fitness , Models, Genetic , Selection, Genetic
3.
Mol Ecol ; 33(7): e17311, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38468155

ABSTRACT

Urbanisation is occurring globally, leading to dramatic environmental changes that are altering the ecology and evolution of species. In particular, the expansion of human infrastructure and the loss and fragmentation of natural habitats in cities is predicted to increase genetic drift and reduce gene flow by reducing the size and connectivity of populations. Alternatively, the 'urban facilitation model' suggests that some species will have greater gene flow into and within cities leading to higher diversity and lower differentiation in urban populations. These alternative hypotheses have not been contrasted across multiple cities. Here, we used the genomic data from the GLobal Urban Evolution project (GLUE), to study the effects of urbanisation on non-adaptive evolutionary processes of white clover (Trifolium repens) at a global scale. We found that white clover populations presented high genetic diversity and no evidence of reduced Ne linked to urbanisation. On the contrary, we found that urban populations were less likely to experience a recent decrease in effective population size than rural ones. In addition, we found little genetic structure among populations both globally and between urban and rural populations, which showed extensive gene flow between habitats. Interestingly, white clover displayed overall higher gene flow within urban areas than within rural habitats. Our study provides the largest comprehensive test of the demographic effects of urbanisation. Our results contrast with the common perception that heavily altered and fragmented urban environments will reduce the effective population size and genetic diversity of populations and contribute to their isolation.


Subject(s)
Genetic Drift , Urbanization , Humans , Cities , Ecosystem , Demography
4.
Plant Cell ; 33(4): 1016-1041, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33793842

ABSTRACT

Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.


Subject(s)
Chlamydomonas/genetics , Genome, Plant , Phylogeny , Base Sequence , Centromere/genetics , Chlamydomonas reinhardtii/genetics , Conserved Sequence , Evolution, Molecular , Genes, Plant , Genome Size , Genomics/methods , Introns , Long Interspersed Nucleotide Elements , Molecular Sequence Annotation
5.
J Phycol ; 59(1): 281-288, 2023 02.
Article in English | MEDLINE | ID: mdl-36453860

ABSTRACT

Here, we introduce a new method for efficiently sampling Chlamydomonas reinhardtii and closely related species using a colony PCR-based screen with novel primer sets designed to specifically detect these important model microalgae. To demonstrate the utility of our new method, we collected 130 soil samples from a wide range of habitats in Ontario, Canada and identified 33 candidate algae, which were barcoded by sequencing a region of the rbcL plastid gene. For select isolates, 18S rRNA gene and YPT4 nuclear markers were also sequenced. Based on phylogenetic and haplotype network analyses of these three loci, seven novel isolates were identified as C. reinhardtii, and one additional isolate appeared to be more closely related to C. reinhardtii than any other known species. All seven new C. reinhardtii strains were interfertile with previously collected C. reinhardtii field isolates, validating the effectiveness of our molecular screen.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/genetics , Phylogeny , Base Sequence , Polymerase Chain Reaction , Ontario
6.
Mol Biol Evol ; 38(9): 3709-3723, 2021 08 23.
Article in English | MEDLINE | ID: mdl-33950243

ABSTRACT

De novo mutations are central for evolution, since they provide the raw material for natural selection by regenerating genetic variation. However, studying de novo mutations is challenging and is generally restricted to model species, so we have a limited understanding of the evolution of the mutation rate and spectrum between closely related species. Here, we present a mutation accumulation (MA) experiment to study de novo mutation in the unicellular green alga Chlamydomonas incerta and perform comparative analyses with its closest known relative, Chlamydomonas reinhardtii. Using whole-genome sequencing data, we estimate that the median single nucleotide mutation (SNM) rate in C. incerta is µ = 7.6 × 10-10, and is highly variable between MA lines, ranging from µ = 0.35 × 10-10 to µ = 131.7 × 10-10. The SNM rate is strongly positively correlated with the mutation rate for insertions and deletions between lines (r > 0.97). We infer that the genomic factors associated with variation in the mutation rate are similar to those in C. reinhardtii, allowing for cross-prediction between species. Among these genomic factors, sequence context and complexity are more important than GC content. With the exception of a remarkably high C→T bias, the SNM spectrum differs markedly between the two Chlamydomonas species. Our results suggest that similar genomic and biological characteristics may result in a similar mutation rate in the two species, whereas the SNM spectrum has more freedom to diverge.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Base Composition , Chlamydomonas/genetics , Chlamydomonas reinhardtii/genetics , Mutation , Mutation Accumulation , Mutation Rate
7.
PLoS Biol ; 17(6): e3000192, 2019 06.
Article in English | MEDLINE | ID: mdl-31242179

ABSTRACT

Spontaneous mutations are the source of new genetic variation and are thus central to the evolutionary process. In molecular evolution and quantitative genetics, the nature of genetic variation depends critically on the distribution of effects of mutations on fitness and other quantitative traits. Spontaneous mutation accumulation (MA) experiments have been the principal approach for investigating the overall rate of occurrence and cumulative effect of mutations but have not allowed the phenotypic effects of individual mutations to be studied directly. Here, we crossed MA lines of the green alga Chlamydomonas reinhardtii with its unmutated ancestral strain to create haploid recombinant lines, each carrying an average of 50% of the accumulated mutations in a large number of combinations. With the aid of the genome sequences of the MA lines, we inferred the genotypes of the mutations, assayed their growth rate as a measure of fitness, and inferred the distribution of fitness effects (DFE) using a Bayesian mixture model. We infer that the DFE is highly leptokurtic (L-shaped). Of mutations with absolute fitness effects exceeding 1%, about one-sixth increase fitness in the laboratory environment. The inferred distribution of effects for deleterious mutations is consistent with a strong role for nearly neutral evolution. Specifically, such a distribution predicts that nucleotide variation and genetic variation for quantitative traits will be insensitive to change in the effective population size.


Subject(s)
Chlamydomonas reinhardtii/genetics , DNA Mutational Analysis/methods , Genetic Fitness/genetics , Mutation Accumulation , Bayes Theorem , Biological Evolution , Evolution, Molecular , Genetic Variation , Genotype , Models, Genetic , Mutagenesis , Mutation/genetics , Mutation Rate , Selection, Genetic/genetics
8.
PLoS Genet ; 14(2): e1007155, 2018 02.
Article in English | MEDLINE | ID: mdl-29432421

ABSTRACT

By following the evolution of populations that are initially genetically homogeneous, much can be learned about core biological principles. For example, it allows for detailed studies of the rate of emergence of de novo mutations and their change in frequency due to drift and selection. Unfortunately, in multicellular organisms with generation times of months or years, it is difficult to set up and carry out such experiments over many generations. An alternative is provided by "natural evolution experiments" that started from colonizations or invasions of new habitats by selfing lineages. With limited or missing gene flow from other lineages, new mutations and their effects can be easily detected. North America has been colonized in historic times by the plant Arabidopsis thaliana, and although multiple intercrossing lineages are found today, many of the individuals belong to a single lineage, HPG1. To determine in this lineage the rate of substitutions-the subset of mutations that survived natural selection and drift-, we have sequenced genomes from plants collected between 1863 and 2006. We identified 73 modern and 27 herbarium specimens that belonged to HPG1. Using the estimated substitution rate, we infer that the last common HPG1 ancestor lived in the early 17th century, when it was most likely introduced by chance from Europe. Mutations in coding regions are depleted in frequency compared to those in other portions of the genome, consistent with purifying selection. Nevertheless, a handful of mutations is found at high frequency in present-day populations. We link these to detectable phenotypic variance in traits of known ecological importance, life history and growth, which could reflect their adaptive value. Our work showcases how, by applying genomics methods to a combination of modern and historic samples from colonizing lineages, we can directly study new mutations and their potential evolutionary relevance.


Subject(s)
Genome, Plant , Mutation Rate , Mutation/physiology , Plant Development/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Crosses, Genetic , Directed Molecular Evolution , Evolution, Molecular , Gene Flow/physiology , Introduced Species , Phenotype , Phylogeny , Plant Weeds/genetics , Plant Weeds/growth & development , Selection, Genetic , Sequence Analysis, DNA
9.
New Phytol ; 224(3): 1339-1348, 2019 11.
Article in English | MEDLINE | ID: mdl-31222749

ABSTRACT

Recombination suppression in sex chromosomes and mating type loci can lead to degeneration as a result of reduced selection efficacy and Muller's ratchet effects. However, genetic exchange in the form of noncrossover gene conversions may still take place within crossover-suppressed regions. Recent work has found evidence that gene conversion may explain the low degrees of allelic differentiation in the dimorphic mating-type locus (MT) of the isogamous alga Chlamydomonas reinhardtii. However, no one has tested whether gene conversion is sufficient to avoid the degeneration of functional sequence within MT. Here, we calculate degree of linkage disequilibrium (LD) across MT as a proxy for recombination rate and investigate its relationship to patterns of population genetic variation and the efficacy of selection in the region. We find that degree of LD predicts selection efficacy across MT, and that purifying selection is stronger in shared genes than in MT-limited genes to the point of being equivalent to that of autosomal genes. We argue that while crossover suppression is needed in the mating-type loci of many isogamous systems, these loci are less likely to experience selection to differentiate further. Thus, recombination can act in these regions and prevent degeneration caused by Hill-Robertson effects.


Subject(s)
Chlamydomonas reinhardtii/genetics , Evolution, Molecular , Genetic Loci , Recombination, Genetic , Base Composition/genetics , Chloroplasts/genetics , Chromosomes, Plant/genetics , Inheritance Patterns/genetics , Linkage Disequilibrium/genetics
10.
Mol Ecol ; 28(17): 3977-3993, 2019 09.
Article in English | MEDLINE | ID: mdl-31338894

ABSTRACT

The nature of population structure in microbial eukaryotes has long been debated. Competing models have argued that microbial species are either ubiquitous, with high dispersal and low rates of speciation, or that for many species gene flow between populations is limited, resulting in evolutionary histories similar to those of macroorganisms. However, population genomic approaches have seldom been applied to this question. Here, we analyse whole-genome resequencing data for all 36 confirmed field isolates of the green alga Chlamydomonas reinhardtii. At a continental scale, we report evidence for putative allopatric divergence, between both North American and Japanese isolates, and two highly differentiated lineages within N. America. Conversely, at a local scale within the most densely sampled lineage, we find little evidence for either spatial or temporal structure. Taken together with evidence for ongoing admixture between the two N. American lineages, this lack of structure supports a role for substantial dispersal in C. reinhardtii and implies that between-lineage differentiation may be maintained by reproductive isolation and/or local adaptation. Our results therefore support a role for allopatric divergence in microbial eukaryotes, while also indicating that species may be ubiquitous at local scales. Despite the high genetic diversity observed within the most well-sampled lineage, we find that pairs of isolates share on average ~9% of their genomes in long haplotypes, even when isolates were sampled decades apart and from different locations. This proportion is several orders of magnitude higher than the Wright-Fisher expectation, raising many further questions concerning the evolutionary genetics of C. reinhardtii and microbial eukaryotes generally.


Subject(s)
Chlamydomonas reinhardtii/genetics , Haplotypes/genetics , Genome , Geography , Phylogeny , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA
11.
Genome Res ; 25(11): 1739-49, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26260971

ABSTRACT

Describing the process of spontaneous mutation is fundamental for understanding the genetic basis of disease, the threat posed by declining population size in conservation biology, and much of evolutionary biology. Directly studying spontaneous mutation has been difficult, however, because new mutations are rare. Mutation accumulation (MA) experiments overcome this by allowing mutations to build up over many generations in the near absence of natural selection. Here, we sequenced the genomes of 85 MA lines derived from six genetically diverse strains of the green alga Chlamydomonas reinhardtii. We identified 6843 new mutations, more than any other study of spontaneous mutation. We observed sevenfold variation in the mutation rate among strains and that mutator genotypes arose, increasing the mutation rate approximately eightfold in some replicates. We also found evidence for fine-scale heterogeneity in the mutation rate, with certain sequence motifs mutating at much higher rates, and clusters of multiple mutations occurring at closely linked sites. There was little evidence, however, for mutation rate heterogeneity between chromosomes or over large genomic regions of 200 kbp. We generated a predictive model of the mutability of sites based on their genomic properties, including local GC content, gene expression level, and local sequence context. Our model accurately predicted the average mutation rate and natural levels of genetic diversity of sites across the genome. Notably, trinucleotides vary 17-fold in rate between the most and least mutable sites. Our results uncover a rich heterogeneity in the process of spontaneous mutation both among individuals and across the genome.


Subject(s)
Chlamydomonas reinhardtii/genetics , Genetic Variation , Genome, Plant , Mutation Rate , DNA, Plant/genetics , Evolution, Molecular , Genotype , Sequence Alignment , Sequence Analysis, DNA
12.
Proc Biol Sci ; 285(1878)2018 05 16.
Article in English | MEDLINE | ID: mdl-29743253

ABSTRACT

Urban environments offer the opportunity to study the role of adaptive and non-adaptive evolutionary processes on an unprecedented scale. While the presence of parallel clines in heritable phenotypic traits is often considered strong evidence for the role of natural selection, non-adaptive evolutionary processes can also generate clines, and this may be more likely when traits have a non-additive genetic basis due to epistasis. In this paper, we use spatially explicit simulations modelled according to the cyanogenesis (hydrogen cyanide, HCN) polymorphism in white clover (Trifolium repens) to examine the formation of phenotypic clines along urbanization gradients under varying levels of drift, gene flow and selection. HCN results from an epistatic interaction between two Mendelian-inherited loci. Our results demonstrate that the genetic architecture of this trait makes natural populations susceptible to decreases in HCN frequencies via drift. Gradients in the strength of drift across a landscape resulted in phenotypic clines with lower frequencies of HCN in strongly drifting populations, giving the misleading appearance of deterministic adaptive changes in the phenotype. Studies of heritable phenotypic change in urban populations should generate null models of phenotypic evolution based on the genetic architecture underlying focal traits prior to invoking selection's role in generating adaptive differentiation.


Subject(s)
Biological Evolution , Gene Flow , Genetic Drift , Hydrogen Cyanide/metabolism , Polymorphism, Genetic , Selection, Genetic , Trifolium/genetics , Phenotype
13.
Mol Biol Evol ; 33(3): 800-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26615203

ABSTRACT

Plastids perform crucial cellular functions, including photosynthesis, across a wide variety of eukaryotes. Since endosymbiosis, plastids have maintained independent genomes that now display a wide diversity of gene content, genome structure, gene regulation mechanisms, and transmission modes. The evolution of plastid genomes depends on an input of de novo mutation, but our knowledge of mutation in the plastid is limited to indirect inference from patterns of DNA divergence between species. Here, we use a mutation accumulation experiment, where selection acting on mutations is rendered ineffective, combined with whole-plastid genome sequencing to directly characterize de novo mutation in Chlamydomonas reinhardtii. We show that the mutation rates of the plastid and nuclear genomes are similar, but that the base spectra of mutations differ significantly. We integrate our measure of the mutation rate with a population genomic data set of 20 individuals, and show that the plastid genome is subject to substantially stronger genetic drift than the nuclear genome. We also show that high levels of linkage disequilibrium in the plastid genome are not due to restricted recombination, but are instead a consequence of increased genetic drift. One likely explanation for increased drift in the plastid genome is that there are stronger effects of genetic hitchhiking. The presence of recombination in the plastid is consistent with laboratory studies in C. reinhardtii and demonstrates that although the plastid genome is thought to be uniparentally inherited, it recombines in nature at a rate similar to the nuclear genome.


Subject(s)
Chlamydomonas reinhardtii/genetics , Genetic Drift , Genome, Plastid , Mutation Rate , Mutation , Recombination, Genetic , Base Composition , Genetics, Population , Polymorphism, Genetic
14.
Mol Biol Evol ; 32(1): 239-43, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25371432

ABSTRACT

We estimated the spontaneous mutation rate in Heliconius melpomene by genome sequencing of a pair of parents and 30 of their offspring, based on the ratio of number of de novo heterozygotes to the number of callable site-individuals. We detected nine new mutations, each one affecting a single site in a single offspring. This yields an estimated mutation rate of 2.9 × 10(-9) (95% confidence interval, 1.3 × 10(-9)-5.5 × 10(-9)), which is similar to recent estimates in Drosophila melanogaster, the only other insect species in which the mutation rate has been directly estimated. We infer that recent effective population size of H. melpomene is about 2 million, a substantially lower value than its census size, suggesting a role for natural selection reducing diversity. We estimate that H. melpomene diverged from its Müllerian comimic H. erato about 6 Ma, a somewhat later date than estimates based on a local molecular clock.


Subject(s)
Butterflies/growth & development , Genome, Insect , Mutation Rate , Sequence Analysis, DNA/methods , Animals , Butterflies/classification , Butterflies/genetics , Drosophila melanogaster/genetics , Evolution, Molecular , Female , Male , Phylogeny , Population Density , Selection, Genetic
15.
Mol Biol Evol ; 32(10): 2547-58, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26037536

ABSTRACT

The brown rat, Rattus norvegicus, is both a notorious pest and a frequently used model in biomedical research. By analyzing genome sequences of 12 wild-caught brown rats from their presumed ancestral range in NE China, along with the sequence of a black rat, Rattus rattus, we investigate the selective and demographic forces shaping variation in the genome. We estimate that the recent effective population size (Ne) of this species = [Formula: see text], based on silent site diversity. We compare patterns of diversity in these genomes with patterns in multiple genome sequences of the house mouse (Mus musculus castaneus), which has a much larger Ne. This reveals an important role for variation in the strength of genetic drift in mammalian genome evolution. By a Pairwise Sequentially Markovian Coalescent analysis of demographic history, we infer that there has been a recent population size bottleneck in wild rats, which we date to approximately 20,000 years ago. Consistent with this, wild rat populations have experienced an increased flux of mildly deleterious mutations, which segregate at higher frequencies in protein-coding genes and conserved noncoding elements. This leads to negative estimates of the rate of adaptive evolution (α) in proteins and conserved noncoding elements, a result which we discuss in relation to the strongly positive estimates observed in wild house mice. As a consequence of the population bottleneck, wild rats also show a markedly slower decay of linkage disequilibrium with physical distance than wild house mice.


Subject(s)
Biological Evolution , Animals , Conserved Sequence/genetics , DNA, Intergenic/genetics , Exons/genetics , Genome , Linkage Disequilibrium/genetics , Mice , Mutation/genetics , Open Reading Frames/genetics , Polymorphism, Single Nucleotide/genetics , Population Density , Rats
16.
PLoS Genet ; 9(12): e1003995, 2013.
Article in English | MEDLINE | ID: mdl-24339797

ABSTRACT

The contribution of regulatory versus protein change to adaptive evolution has long been controversial. In principle, the rate and strength of adaptation within functional genetic elements can be quantified on the basis of an excess of nucleotide substitutions between species compared to the neutral expectation or from effects of recent substitutions on nucleotide diversity at linked sites. Here, we infer the nature of selective forces acting in proteins, their UTRs and conserved noncoding elements (CNEs) using genome-wide patterns of diversity in wild house mice and divergence to related species. By applying an extension of the McDonald-Kreitman test, we infer that adaptive substitutions are widespread in protein-coding genes, UTRs and CNEs, and we estimate that there are at least four times as many adaptive substitutions in CNEs and UTRs as in proteins. We observe pronounced reductions in mean diversity around nonsynonymous sites (whether or not they have experienced a recent substitution). This can be explained by selection on multiple, linked CNEs and exons. We also observe substantial dips in mean diversity (after controlling for divergence) around protein-coding exons and CNEs, which can also be explained by the combined effects of many linked exons and CNEs. A model of background selection (BGS) can adequately explain the reduction in mean diversity observed around CNEs. However, BGS fails to explain the wide reductions in mean diversity surrounding exons (encompassing ~100 Kb, on average), implying that there is a substantial role for adaptation within exons or closely linked sites. The wide dips in diversity around exons, which are hard to explain by BGS, suggest that the fitness effects of adaptive amino acid substitutions could be substantially larger than substitutions in CNEs. We conclude that although there appear to be many more adaptive noncoding changes, substitutions in proteins may dominate phenotypic evolution.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Muridae/genetics , Open Reading Frames/genetics , Regulatory Sequences, Nucleic Acid , Amino Acid Substitution/genetics , Animals , Exons , Genetic Variation , Mice , Mutation , Polymorphism, Genetic
17.
Nat Ecol Evol ; 8(6): 1074-1086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38641700

ABSTRACT

Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.


Subject(s)
Biological Evolution , Cities , Mutation , Urbanization , Humans , Mutation Rate , Animals
18.
BMC Bioinformatics ; 14: 356, 2013 Dec 05.
Article in English | MEDLINE | ID: mdl-24308302

ABSTRACT

BACKGROUND: Modern biological science generates a vast amount of data, the analysis of which presents a major challenge to researchers. Data are commonly represented in tables stored as plain text files and require line-by-line parsing for analysis, which is time consuming and error prone. Furthermore, there is no simple means of indexing these files so that rows containing particular values can be quickly found. RESULTS: We introduce a new data format and software library called wormtable, which provides efficient access to tabular data in Python. Wormtable stores data in a compact binary format, provides random access to rows, and enables sophisticated indexing on columns within these tables. Files written in existing formats can be easily converted to wormtable format, and we provide conversion utilities for the VCF and GTF formats. CONCLUSIONS: Wormtable's simple API allows users to process large tables orders of magnitude more quickly than is possible when parsing text. Furthermore, the indexing facilities provide efficient access to subsets of the data along with providing useful methods of summarising columns. Since third-party libraries or custom code are no longer needed to parse complex plain text formats, analysis code can also be substantially simpler as well as being uniform across different data formats. These benefits of reduced code complexity and greatly increased performance allow users much greater freedom to explore their data.


Subject(s)
Computational Biology/methods , Databases, Factual , Electronic Data Processing/methods , Genome, Human , Genomics/methods , Software/trends , Animals , Computer Simulation , Drosophila Proteins/genetics , Genome, Insect , Genomics/instrumentation , Humans , Libraries, Digital/trends , Random Allocation , Search Engine
19.
Genome Biol Evol ; 15(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37542471

ABSTRACT

White clover (Trifolium repens L.; Fabaceae) is an important forage and cover crop in agricultural pastures around the world and is increasingly used in evolutionary ecology and genetics to understand the genetic basis of adaptation. Historically, improvements in white clover breeding practices and assessments of genetic variation in nature have been hampered by a lack of high-quality genomic resources for this species, owing in part to its high heterozygosity and allotetraploid hybrid origin. Here, we use PacBio HiFi and chromosome conformation capture (Omni-C) technologies to generate a chromosome-level, haplotype-resolved genome assembly for white clover totaling 998 Mbp (scaffold N50 = 59.3 Mbp) and 1 Gbp (scaffold N50 = 58.6 Mbp) for haplotypes 1 and 2, respectively, with each haplotype arranged into 16 chromosomes (8 per subgenome). We additionally provide a functionally annotated haploid mapping assembly (968 Mbp, scaffold N50 = 59.9 Mbp), which drastically improves on the existing reference assembly in both contiguity and assembly accuracy. We annotated 78,174 protein-coding genes, resulting in protein BUSCO completeness scores of 99.6% and 99.3% against the embryophyta_odb10 and fabales_odb10 lineage datasets, respectively.


Subject(s)
Trifolium , Trifolium/genetics , Haplotypes , Plant Breeding , Medicago/genetics , Chromosomes
20.
BMC Genomics ; 13: 611, 2012 Nov 12.
Article in English | MEDLINE | ID: mdl-23145563

ABSTRACT

BACKGROUND: Transitions from cross- to self-fertilization are associated with increased genetic drift rendering weakly selected mutations effectively neutral. The effect of drift is predicted to reduce selective constraints on amino acid sequences of proteins and relax biased codon usage. We investigated patterns of nucleotide variation to assess the effect of inbreeding on the accumulation of deleterious mutations in three independently evolved selfing plants. Using high-throughput sequencing, we assembled the floral transcriptomes of four individuals of Eichhornia (Pontederiaceae); these included one outcrosser and two independently derived selfers of E. paniculata, and E. paradoxa, a selfing outgroup. The dataset included ~8000 loci totalling ~3.5 Mb of coding DNA. RESULTS: Tests of selection were consistent with purifying selection constraining evolution of the transcriptome. However, we found an elevation in the proportion of non-synonymous sites that were potentially deleterious in the E. paniculata selfers relative to the outcrosser. Measurements of codon usage in high versus low expression genes demonstrated reduced bias in both E. paniculata selfers. CONCLUSIONS: Our findings are consistent with a small reduction in the efficacy of selection on protein sequences associated with transitions to selfing, and reduced selection in selfers on synonymous changes that influence codon usage.


Subject(s)
Codon , Eichhornia/genetics , Genetic Loci , Genome, Plant , Selection, Genetic , Self-Fertilization , Biological Evolution , Eichhornia/classification , Genetic Drift , High-Throughput Nucleotide Sequencing , Mutation , Pollination , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL