ABSTRACT
Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.
Subject(s)
Neoplasms , RNA Precursors , Male , Humans , RNA Precursors/metabolism , Alternative Splicing , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell , Epitopes, T-Lymphocyte , Immunotherapy , Antigens, Neoplasm , Peptides/metabolism , Neoplasms/genetics , Neoplasms/therapyABSTRACT
CMV, a ubiquitous herpesvirus, elicits an extraordinarily large T cell response that is sustained or increases over time, a phenomenon termed 'memory inflation.' Remarkably, even latent, non-productive infection can drive memory inflation. Despite intense research on this phenomenon, the infected cell type(s) involved are unknown. To identify the responsible cell type(s), we designed a Cre-lox murine CMV (MCMV) system, where a spread-deficient (ΔgL) virus expresses recombinant SIINFEKL only in Cre+ host cells. We found that latent infection of endothelial cells (ECs), but not dendritic cells (DCs) or hepatocytes, was sufficient to drive CD8 T cell memory inflation. Infection of Lyve-1-Cre and Prox1-CreERT2 mice revealed that amongst EC subsets, infection of lymphatic ECs was sufficient. Genetic ablation of ß2m on lymphatic ECs did not prevent inflation, suggesting another unidentified cell type can also present antigen to CD8 T cells during latency. This novel system definitively shows that antigen presentation by lymphatic ECs drives robust CD8 T cell memory inflation.
Subject(s)
Cytomegalovirus Infections , Latent Infection , Muromegalovirus , Animals , Mice , Endothelial Cells , CD8-Positive T-Lymphocytes , Antigens , Immunologic MemoryABSTRACT
Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide-major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.
Subject(s)
Acid Phosphatase , Antigens, Neoplasm , Receptors, Antigen, T-Cell , Acid Phosphatase/metabolism , Antigens, Neoplasm/metabolism , Epitopes , HLA-A Antigens/metabolism , HLA-A2 Antigen , Humans , Leukocytes, Mononuclear , Neoplasms/immunology , Peptides , Receptors, Antigen, T-Cell/metabolismABSTRACT
T cell receptors (TCRs) are generated by somatic recombination of V/D/J segments to produce up to 1015 unique sequences. Highly sensitive and specific techniques are required to isolate and identify the rare TCR sequences that respond to antigens of interest. Here, we describe the use of mRNA sequencing via cross-linker regulated intracellular phenotype (CLInt-Seq) for efficient recovery of antigen-specific TCRs in cells stained for combinations of intracellular proteins such as cytokines or transcription factors. This method enables high-throughput identification and isolation of low-frequency TCRs specific for any antigen. As a proof of principle, intracellular staining for TNFα and IFNγ identified cytomegalovirus (CMV)- and Epstein-Barr virus (EBV)-reactive TCRs with efficiencies similar to state-of-the-art peptide-MHC multimer methodology. In a separate experiment, regulatory T cells were profiled based on intracellular FOXP3 staining, demonstrating the ability to examine phenotypes based on transcription factors. We further optimized the intracellular staining conditions to use a chemically cleavable primary amine cross-linker compatible with current single-cell sequencing technology. CLInt-Seq for TNFα and IFNγ performed similarly to isolation with multimer staining for EBV-reactive TCRs. We anticipate CLInt-Seq will enable droplet-based single-cell mRNA analysis from any tissue where minor populations need to be isolated by intracellular markers.
Subject(s)
Forkhead Transcription Factors/genetics , Interferon-gamma/genetics , Tumor Necrosis Factor-alpha/genetics , V(D)J Recombination/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Cloning, Molecular , Cytomegalovirus/immunology , Cytomegalovirus/pathogenicity , Epitopes/immunology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/pathogenicity , Humans , RNA, Messenger/genetics , RNA-Seq , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Single-Cell Analysis , T-Lymphocytes, Regulatory/immunology , V(D)J Recombination/immunologyABSTRACT
BACKGROUND: Human cytomegalovirus (HCMV) infection causes disease in newborns and transplant recipients. A HCMV vaccine (Towne) protects transplant recipients. METHODS: The genomes of Towne and the nonattenuated Toledo strain were recombined, yielding 4 Towne/Toledo chimera vaccines. Each of 36 HCMV-seronegative men received 1 subcutaneous dose of 10, 100, or 1000 plaque-forming units (PFU) in cohorts of 3. Safety and immunogenicity were evaluated over 12 weeks after immunization and for 52 weeks for those who seroconverted. RESULTS: There were no serious local or systemic reactions. No subject had HCMV in urine or saliva. For chimera 3, none of 9 subjects seroconverted. For chimera 1, 1 of 9 seroconverted (the seroconverter received 100 PFU). For chimera 2, 3 subjects seroconverted (1 received 100 PFU, and 2 received 1000 PFU). For chimera 4, 7 subjects seroconverted (1 received 10 PFU, 3 received 100 PFU, and 3 received 1000 PFU). All 11 seroconverters developed low but detectable levels of neutralizing activity. CD4+ T-cell responses were detectable in 1 subject (who received 100 PFU of chimera 4). Seven subjects receiving chimera 2 or 4 had detectable CD8+ T-cell responses to IE1; 3 responded to 1-2 additional antigens. CONCLUSIONS: The Towne/Toledo chimera vaccine candidates were well tolerated and were not excreted. Additional human trials of chimeras 2 and 4 are appropriate. CLINICAL TRIALS REGISTRATION: NCT01195571.
Subject(s)
Chimera/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , Vaccines, Synthetic/immunology , Adult , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , Humans , Lymphocyte Activation/immunology , Male , Middle Aged , Vaccination/methods , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Young AdultABSTRACT
Cross-reactivity and direct killing of target cells remain underexplored for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-specific CD8+ T cells. Isolation of T cell receptors (TCRs) and overexpression in allogeneic cells allows for extensive T cell reactivity profiling. We identify SARS-CoV-2 RNA-dependent RNA polymerase (RdRp/NSP12) as highly conserved, likely due to its critical role in the virus life cycle. We perform single-cell TCRαß sequencing in human leukocyte antigen (HLA)-A∗02:01-restricted, RdRp-specific T cells from SARS-CoV-2-unexposed individuals. Human T cells expressing these TCRαß constructs kill target cell lines engineered to express full-length RdRp. Three TCR constructs recognize homologous epitopes from common cold coronaviruses, indicating CD8+ T cells can recognize evolutionarily diverse coronaviruses. Analysis of individual TCR clones may help define vaccine epitopes that can induce long-term immunity against SARS-CoV-2 and other coronaviruses.
Subject(s)
Coronavirus RNA-Dependent RNA Polymerase/immunology , HLA-A2 Antigen/immunology , SARS-CoV-2/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/therapy , Cell Culture Techniques , Cross Reactions/immunology , Epitopes, T-Lymphocyte/immunology , HLA-A Antigens/immunology , HLA-A2 Antigen/genetics , Humans , Immunodominant Epitopes/immunology , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , RNA, Viral/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunologyABSTRACT
Cytomegalovirus (CMV)-based vaccines have shown remarkable efficacy in the rhesus macaque model of acquired immune deficiency syndrome, enabling 50% of vaccinated monkeys to clear a subsequent virulent simian immunodeficiency virus challenge. The protective vaccine elicited unconventional CD8 T cell responses that were entirely restricted by MHC II or the nonclassical MHC I molecule, MHC-E. These unconventional responses were only elicited by a fibroblast-adapted rhesus CMV vector with limited tissue tropism; a repaired vector with normal tropism elicited conventional responses. Testing whether these unusual protective CD8 T responses could be elicited in humans requires vaccinating human subjects with a fibroblast-adapted mutant of human CMV (HCMV). In this study, we describe the CD8 T cell responses of human subjects vaccinated with two fibroblast-adapted HCMV vaccines. Most responses were identified as conventional classically MHC I restricted, and we found no evidence for MHC II or HLA-E restriction. These results indicate that fibroblast adaptation alone is unlikely to explain the unconventional responses observed in macaques.