Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 156(3): 563-76, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24440334

ABSTRACT

The serum response factor (SRF) binds to coactivators, such as myocardin-related transcription factor-A (MRTF-A), and mediates gene transcription elicited by diverse signaling pathways. SRF/MRTF-A-dependent gene transcription is activated when nuclear MRTF-A levels increase, enabling the formation of transcriptionally active SRF/MRTF-A complexes. The level of nuclear MRTF-A is regulated by nuclear G-actin, which binds to MRTF-A and promotes its nuclear export. However, pathways that regulate nuclear actin levels are poorly understood. Here, we show that MICAL-2, an atypical actin-regulatory protein, mediates SRF/MRTF-A-dependent gene transcription elicited by nerve growth factor and serum. MICAL-2 induces redox-dependent depolymerization of nuclear actin, which decreases nuclear G-actin and increases MRTF-A in the nucleus. Furthermore, we show that MICAL-2 is a target of CCG-1423, a small molecule inhibitor of SRF/MRTF-A-dependent transcription that exhibits efficacy in various preclinical disease models. These data identify redox modification of nuclear actin as a regulatory switch that mediates SRF/MRTF-A-dependent gene transcription.


Subject(s)
Cell Nucleus/metabolism , Microfilament Proteins/metabolism , Oxidoreductases/metabolism , Serum Response Factor/metabolism , Signal Transduction , Actins/metabolism , Amino Acid Sequence , Anilides/pharmacology , Animals , Benzamides/pharmacology , Cell Line , Cells, Cultured , DNA-Binding Proteins/metabolism , Gene Knockdown Techniques , Humans , Mice , Microfilament Proteins/analysis , Microfilament Proteins/genetics , Mixed Function Oxygenases/analysis , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Nerve Growth Factor/metabolism , Neurites/metabolism , Oncogene Proteins, Fusion/metabolism , Oxidation-Reduction , Oxidoreductases/analysis , Oxidoreductases/genetics , Rats , Sequence Alignment , Trans-Activators , Transcription, Genetic , Zebrafish
2.
Int J Cancer ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898604

ABSTRACT

Metastatic cutaneous melanoma is a fatal skin cancer. Resistance to targeted and immune therapies limits the benefits of current treatments. Identifying and adding anti-resistance agents to current treatment protocols can potentially improve clinical responses. Myocardin-related transcription factor (MRTF) is a transcriptional coactivator whose activity is indirectly regulated by actin and the Rho family of GTPases. We previously demonstrated that development of BRAF inhibitor (BRAFi) resistance frequently activates the Rho/MRTF pathway in human and mouse BRAFV600E melanomas. In clinical trials, pretreatment with BRAFi reduces the benefit of immune therapies. We aimed to test the efficacy of concurrent treatment with our MRTF pathway inhibitor CCG-257081 and anti-PD1 in vivo and to examine its effects on the melanoma immune microenvironment. Because MRTF pathway activation upregulates the expression of immune checkpoint inhibitor genes/proteins, we asked whether CCG-257081 can improve the response to immune checkpoint blockade. CCG-257081 reduced the expression of PDL1 in BRAFi-resistant melanoma cells and decreased surface PDL1 levels on both BRAFi-sensitive and -resistant melanoma cells. Using our recently described murine vemurafenib-resistant melanoma model, we found that CCG-257081, in combination with anti-PD1 immune therapy, reduced tumor growth and increased survival. Moreover, anti-PD1/CCG-257081 co-treatment increased infiltration of CD8+ T cells and B cells into the tumor microenvironment and reduced tumor-associated macrophages. Here, we propose CCG-257081 as an anti-resistance and immune therapy-enhancing anti-melanoma agent.

3.
J Pharmacol Exp Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866563

ABSTRACT

Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gαo, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complimentary adeno-associated virus vectors (scAAV9) expressing two splice variants of human GNAO1 Gαo isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intra-striatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side-effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gαo expression and to refine the vector design. Significance Statement GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here, we show that intra-striatal delivery of scAAV9-GNAO1 to express the wild-type Gαo protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.

4.
Am J Respir Cell Mol Biol ; 68(6): 638-650, 2023 06.
Article in English | MEDLINE | ID: mdl-36780662

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a pathological condition of unknown etiology that results from injury to the lung and an ensuing fibrotic response that leads to the thickening of the alveolar walls and obliteration of the alveolar space. The pathogenesis is not clear, and there are currently no effective therapies for IPF. Small airway disease and mucus accumulation are prominent features in IPF lungs, similar to cystic fibrosis lung disease. The ATP12A gene encodes the α-subunit of the nongastric H+, K+-ATPase, which functions to acidify the airway surface fluid and impairs mucociliary transport function in patients with cystic fibrosis. It is hypothesized that the ATP12A protein may play a role in the pathogenesis of IPF. The authors' studies demonstrate that ATP12A protein is overexpressed in distal small airways from the lungs of patients with IPF compared with normal human lungs. In addition, overexpression of the ATP12A protein in mouse lungs worsened bleomycin induced experimental pulmonary fibrosis. This was prevented by a potassium competitive proton pump blocker, vonoprazan. These data support the concept that the ATP12A protein plays an important role in the pathogenesis of lung fibrosis. Inhibition of the ATP12A protein has potential as a novel therapeutic strategy in IPF treatment.


Subject(s)
Cystic Fibrosis , Idiopathic Pulmonary Fibrosis , Mice , Animals , Humans , Cystic Fibrosis/metabolism , Proton Pumps/metabolism , Proton Pumps/pharmacology , Proton Pumps/therapeutic use , Idiopathic Pulmonary Fibrosis/pathology , Lung/pathology , Bleomycin/pharmacology , Fibrosis , H(+)-K(+)-Exchanging ATPase/genetics , H(+)-K(+)-Exchanging ATPase/metabolism , H(+)-K(+)-Exchanging ATPase/pharmacology
5.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762086

ABSTRACT

Cutaneous melanoma is the deadliest skin cancer. Most have Ras-MAPK pathway (BRAFV600E or NRAS) mutations and highly effective targeted therapies exist; however, they and immune therapies are limited by resistance, in part driven by small GTPase (Rho and Rac) activation. To facilitate preclinical studies of combination therapies to provide durable responses, we describe the first mouse melanoma lines resistant to BRAF inhibitors. Treatment of mouse lines, YUMM1.7 and YUMMER, with vemurafenib (Vem), the BRAFV600E-selective inhibitor, resulted in high-level resistance (IC50 shifts 20-30-fold). Resistant cells showed enhanced activation of Rho and the downstream transcriptional coactivator, myocardin-related transcription factor (MRTF). Resistant cells exhibited increased stress fibers, nuclear translocation of MRTF-A, and an increased MRTF-A gene signature. Pharmacological inhibition of the Rho/MRTF pathway using CCG-257081 reduced viability of resistant lines and enhanced sensitivity to Vem. Remarkably, co-treatment of parental lines with Vem and CCG-257081 eliminated resistant colony development. Resistant cells grew more slowly in vitro, but they developed highly aggressive tumors with a shortened survival of tumor-bearing mice. Increased expression of immune checkpoint inhibitor proteins (ICIs) in resistant lines may contribute to aggressive in vivo behavior. Here, we introduce the first drug-resistant mouse melanoma models for assessing combinations of targeted and immune therapies.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Mice , Melanoma/drug therapy , Melanoma/genetics , Vemurafenib/pharmacology , Up-Regulation , Rho Factor , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Transcription Factors/genetics , Immune Checkpoint Proteins
6.
Mol Pharmacol ; 101(1): 1-12, 2022 01.
Article in English | MEDLINE | ID: mdl-34732527

ABSTRACT

Most B-Raf proto-oncogene (BRAF)-mutant melanoma tumors respond initially to BRAF inhibitor (BRAFi)/mitogen-activated protein kinase kinase 1 inhibitor (MEKi) therapy, although few patients have durable long-term responses to these agents. The goal of this study was to use an unbiased computational approach to identify inhibitors that reverse an experimentally derived BRAFi resistance gene expression signature. Using this approach, we found that ibrutinib effectively reverses this signature, and we demonstrate experimentally that ibrutinib resensitizes a subset of BRAFi-resistant melanoma cells to vemurafenib. Ibrutinib is used clinically as an inhibitor of the Src family kinase Bruton tyrosine kinase (BTK); however, neither BTK deletion nor treatment with acalabrutinib, another BTK inhibitor with reduced off-target activity, resensitized cells to vemurafenib. These data suggest that ibrutinib acts through a BTK-independent mechanism in vemurafenib resensitization. To better understand this mechanism, we analyzed the transcriptional profile of ibrutinib-treated BRAFi-resistant melanoma cells and found that the transcriptional profile of ibrutinib was highly similar to that of multiple Src proto-oncogene kinase inhibitors. Since ibrutinib, but not acalabrutinib, has appreciable off-target activity against multiple Src family kinases, it suggests that ibrutinib may be acting through this mechanism. Furthermore, genes that are differentially expressed in ibrutinib-treated cells are enriched in Yes1-associated transcriptional regulator (YAP1) target genes, and we showed that ibrutinib, but not acalabrutinib, reduces YAP1 activity in BRAFi-resistant melanoma cells. Taken together, these data suggest that ibrutinib, or other Src family kinase inhibitors, may be useful for treating some BRAFi/MEKi-refractory melanoma tumors. SIGNIFICANCE STATEMENT: MAPK-targeted therapies provide dramatic initial responses, but resistance develops rapidly; a subset of these tumors may be rendered sensitive again by treatment with an approved Src family kinase inhibitor-ibrutinub-potentially providing improved clinical outcomes.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Melanoma/metabolism , Piperidines/pharmacology , Proto-Oncogene Proteins B-raf/metabolism , YAP-Signaling Proteins/metabolism , Adenine/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/physiology , HEK293 Cells , Humans , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Vemurafenib/pharmacology , YAP-Signaling Proteins/antagonists & inhibitors
7.
J Biol Chem ; 297(5): 101268, 2021 11.
Article in English | MEDLINE | ID: mdl-34600890

ABSTRACT

Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.


Subject(s)
Biogenic Polyamines/chemistry , Fish Proteins/chemistry , Molecular Docking Simulation , Receptors, Odorant/chemistry , Amino Acid Motifs , Animals , Binding Sites , Fish Proteins/genetics , Fish Proteins/metabolism , HEK293 Cells , Humans , Lampreys , Mice , Mutagenesis, Site-Directed , Receptors, Odorant/genetics , Receptors, Odorant/metabolism
8.
J Neurophysiol ; 127(3): 607-622, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35080448

ABSTRACT

GNAO1 encodes Gαo, a heterotrimeric G protein α subunit in the Gi/o family. In this report, we used a Gnao1 mouse model "G203R" previously described as a "gain-of-function" Gnao1 mutant with movement abnormalities and enhanced seizure susceptibility. Here, we report an unexpected second mutation resulting in a loss-of-function Gαo protein, and describe alterations in central synaptic transmission. Whole cell patch clamp recordings from Purkinje cells (PCs) in acute cerebellar slices from Gnao1 mutant mice showed significantly lower frequencies of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs and mIPSCs) compared with WT mice. There was no significant change in sEPSCs or mEPSCs. Whereas mIPSC frequency was reduced, mIPSC amplitudes were not affected, suggesting a presynaptic mechanism of action. A modest decrease in the number of molecular layer interneurons was insufficient to explain the magnitude of IPSC suppression. Paradoxically, Gi/o inhibitors (pertussis toxin) enhanced the mutant-suppressed mIPSC frequency and eliminated the difference between WT and Gnao1 mice. Although GABAB receptor regulates mIPSCs, neither agonists nor antagonists of this receptor altered function in the mutant mouse PCs. This study is an electrophysiological investigation of the role of Gi/o protein in cerebellar synaptic transmission using an animal model with a loss-of-function Gi/o protein.NEW & NOTEWORTHY This report reveals the electrophysiological mechanisms of a movement disorder animal model with monoallelic Gnao1 loss. This study illustrates the role of Gαo protein in regulating GABA release in mouse cerebellum. This study could also facilitate the discovery of new drugs or drug repurposing for GNAO1-associated disorders. Moreover, since GNAO1 shares pathways with other genes related to movement disorders, developing drugs for the treatment of GNAO1-associated movement disorders could further the pharmacological intervention for other monogenic movement disorders.


Subject(s)
Movement Disorders , Purkinje Cells , Animals , Cerebellum/physiology , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Mice , Purkinje Cells/physiology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism
9.
PLoS Biol ; 17(7): e3000332, 2019 07.
Article in English | MEDLINE | ID: mdl-31287811

ABSTRACT

Semen is fundamental for sexual reproduction. The non-sperm part of ejaculated semen, or seminal plasma, facilitates the delivery of sperm to the eggs. The seminal plasma of some species with internal fertilization contains anti-aphrodisiac molecules that deter promiscuity in post-copulatory females, conferring fitness benefits to the ejaculating male. By contrast, in some taxa with external fertilization such as fish, exposure to semen promotes spawning behaviors. However, no specific compounds in semen have been identified as aphrodisiac pheromones. We sought to identify a pheromone from the milt (fish semen) of sea lamprey (Petromyzon marinus), a jawless fish that spawns in lek-like aggregations in which each spermiating male defends a nest, and ovulatory females move from nest to nest to mate. We postulated that milt compounds signal to ovulatory females the presence of spawning spermiating males. We determined that spermine, an odorous polyamine initially identified from human semen, is indeed a milt pheromone. At concentrations as low as 10-14 molar, spermine stimulated the lamprey olfactory system and attracted ovulatory females but did not attract males or pre-ovulatory females. We found spermine activated a trace amine-associated receptor (TAAR)-like receptor in the lamprey olfactory epithelium. A novel antagonist to that receptor nullified the attraction of ovulatory females to spermine. Our results elucidate a mechanism whereby a seminal plasma pheromone attracts ready-to-mate females and implicates a possible conservation of the olfactory detection of semen from jawless vertebrates to humans. Milt pheromones may also have management implications for sea lamprey populations.


Subject(s)
Petromyzon/physiology , Pheromones/metabolism , Semen/metabolism , Sex Attractants/metabolism , Spermatozoa/physiology , Spermine/metabolism , Animals , Female , HEK293 Cells , Humans , Male , Petromyzon/metabolism , Reproduction/physiology , Spermatozoa/metabolism
10.
Mol Pharmacol ; 100(2): 53-60, 2021 08.
Article in English | MEDLINE | ID: mdl-34031187

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary arterial pressure and carries a very poor prognosis. Understanding of PAH pathogenesis is needed to support the development of new therapeutic strategies. Transforming growth factor ß (TGF-ß) drives vascular remodeling and increases vascular resistance by regulating differentiation and proliferation of smooth muscle cells (SMCs). Also, sphingosine-1-phosphate (S1P) has been implicated in PAH, but the relation between these two signaling mechanisms is not well understood. Here, we characterize the signaling networks downstream of TGF-ß in human pulmonary arterial smooth muscle cells (HPASMCs), which involves mothers against decapentaplegic homolog (SMAD) signaling as well as Rho GTPases. Activation of Rho GTPases regulates myocardin-related transcription factor (MRTF) and serum response factor (SRF) transcription activity and results in upregulation of contractile gene expression. Our genetic and pharmacologic data show that in HPASMCs upregulation of α smooth muscle actin (αSMA) and calponin by TGF-ß is dependent on both SMAD and Rho/MRTF-A/SRF transcriptional mechanisms.The kinetics of TGF-ß-induced myosin light chain (MLC) 2 phosphorylation, a measure of RhoA activation, are slow, as is regulation of the Rho/MRTF/SRF-induced αSMA expression. These results suggest that TGF-ß1 activates Rho/phosphorylated MLC2 through an indirect mechanism, which was confirmed by sensitivity to cycloheximide treatment. As a potential mechanism for this indirect action, TGF-ß1 upregulates mRNA for sphingosine kinase (SphK1), the enzyme that produces S1P, an upstream Rho activator, as well as mRNA levels of the S1P receptor (S1PR) 3. SphK1 inhibitor and S1PR3 inhibitors (PF543 and TY52156/VPC23019) reduce TGF-ß1-induced αSMA upregulation. Overall, we propose a model in which TGF-ß1 activates Rho/MRTF-A/SRF by potentiating an autocrine/paracrine S1P signaling mechanism through SphK1 and S1PR3. SIGNIFICANCE STATEMENT: In human pulmonary arterial smooth muscle cells, transforming growth factor ß depends on sphingosine-1-phosphate signaling to bridge the interaction between mothers against decapentaplegic homolog and Rho/myocardin-related transcription factor (MRTF) signaling in regulating α smooth muscle actin (αSMA) expression. The Rho/MRTF pathway is a signaling node in the αSMA regulatory network and is a potential therapeutic target for the treatment of pulmonary arterial hypertension.


Subject(s)
Lysophospholipids/metabolism , Pulmonary Artery/cytology , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Transforming Growth Factor beta1/pharmacology , Actins/genetics , Calcium-Binding Proteins/genetics , Cells, Cultured , Gene Expression Regulation/drug effects , Humans , Microfilament Proteins/genetics , Muscle Contraction/drug effects , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Serum Response Factor/genetics , Smad Proteins/genetics , Smad Proteins/metabolism , Sphingosine/metabolism , Calponins
11.
J Biol Chem ; 295(34): 12153-12166, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32636305

ABSTRACT

Pheromones play critical roles in habitat identification and reproductive behavior synchronization in the sea lamprey (Petromyzon marinus). The bile acid 3-keto petromyzonol sulfate (3kPZS) is a major component of the sex pheromone mixture from male sea lamprey that induces specific olfactory and behavioral responses in conspecific individuals. Olfactory receptors interact directly with pheromones, which is the first step in their detection, but identifying the cognate receptors of specific pheromones is often challenging. Here, we deorphanized two highly related odorant receptors (ORs), OR320a and OR320b, of P. marinus that respond to 3kPZS. In a heterologous expression system coupled to a cAMP-responsive CRE-luciferase, OR320a and OR320b specifically responded to C24 5α-bile acids, and both receptors were activated by the same set of 3kPZS analogs. OR320a displayed larger responses to all 3kPZS analogs than did OR320b. This difference appeared to be largely determined by a single amino acid residue, Cys-792.56, the C-terminal sixth residue relative to the most conserved residue in the second transmembrane domain (2.56) of OR320a. This region of TM2 residues 2.56-2.60 apparently is critical for the detection of steroid compounds by odorant receptors in lamprey, zebrafish, and humans. Finally, we identified OR320 orthologs in Japanese lamprey (Lethenteron camtschaticum), suggesting that the OR320 family may be widely present in lamprey species and that OR320 may be under purifying selection. Our results provide a system to examine the origin of olfactory steroid detection in vertebrates and to define a highly conserved molecular mechanism for steroid-ligand detection by G protein-coupled receptors.


Subject(s)
Cholic Acids , Fish Proteins , Lampreys , Pheromones , Receptors, Odorant , Animals , Cholic Acids/chemistry , Cholic Acids/pharmacology , Fish Proteins/biosynthesis , Fish Proteins/chemistry , Fish Proteins/genetics , Lampreys/genetics , Lampreys/metabolism , Pheromones/chemistry , Pheromones/pharmacology , Receptors, Odorant/biosynthesis , Receptors, Odorant/chemistry , Receptors, Odorant/genetics
12.
J Pharmacol Exp Ther ; 373(1): 24-33, 2020 04.
Article in English | MEDLINE | ID: mdl-31907305

ABSTRACT

Neurodevelopmental disorder with involuntary movements (Online Mendelian Inheritance in Man: 617493) is a severe, early onset neurologic condition characterized by a delay in psychomotor development, hypotonia, and hyperkinetic involuntary movements. Heterozygous de novo mutations in the GNAO1 gene cause neurodevelopmental disorder with involuntary movements. Gα o, the gene product of GNAO1, is the alpha subunit of Go, a member of the heterotrimeric Gi/o family of G proteins. Go is found abundantly throughout the brain, but the pathophysiological mechanisms linking Gα o functions to clinical manifestations of GNAO1-related disorders are still poorly understood. One of the most common mutant alleles among the GNAO1 encephalopathies is the c.626G>A or p.Arg209His (R209H) mutation. We developed heterozygous knock-in Gnao1 +/R209H mutant mice using CRISPR/Cas9 methodology to assess whether a mouse model could replicate aspects of the neurodevelopmental disorder with involuntary movements clinical pattern. Mice carrying the R209H mutation exhibited increased locomotor activity and a modest gait abnormality at 8-12 weeks. In contrast to mice carrying other mutations in Gnao1, the Gnao1 +/R209H mice did not show enhanced seizure susceptibility. Levels of protein expression in multiple brain regions were unchanged from wild-type (WT) mice, but the nucleotide exchange rate of mutant R209H Gα o was 6.2× faster than WT. The atypical neuroleptic risperidone has shown efficacy in a patient with the R209H mutation. It also alleviated the hyperlocomotion phenotype observed in our mouse model but suppressed locomotion in WT mice as well. In this study, we show that Gnao1 +/R209H mice mirror elements of the patient phenotype and respond to an approved pharmacological agent. SIGNIFICANCE STATEMENT: Children with de novo mutations in the GNAO1 gene may present with movement disorders with limited effective therapeutic options. The most common mutant variant seen in children with GNAO1-associated movement disorder is R209H. Here we show, using a novel Gnao1 +/R209H mouse, that there is a clear behavioral phenotype that is suppressed by risperidone. However, risperidone also affects wild-type mouse activity, so its effects are not selective for the GNAO1-associated movement disorder.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Genetic Variation/genetics , Movement Disorders/drug therapy , Movement Disorders/genetics , Risperidone/therapeutic use , Animals , Base Sequence , Dopamine Antagonists/pharmacology , Dopamine Antagonists/therapeutic use , Female , Locomotion/drug effects , Locomotion/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Risperidone/pharmacology
13.
Biophys J ; 116(5): 962-973, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30782397

ABSTRACT

Mammalian cells respond in a variable manner when provided with physiological pulses of ligand, such as low concentrations of acetylcholine present for just tens of seconds or TNFα for just tens of minutes. For a two-pulse stimulation, some cells respond to both pulses, some do not respond, and yet others respond to only one or the other pulse. Are these different response patterns the result of the small number of ligands being able to only stochastically activate the pathway at random times or an output pattern from a deterministic algorithm responding differently to different stimulation intervals? If the response is deterministic in nature, what parameters determine whether a response is generated or skipped? To answer these questions, we developed a two-pulse test that utilizes different rest periods between stimulation pulses. This "rest-period test" revealed that cells skip responses predictably as the rest period is shortened. By combining these experimental results with a mathematical model of the pathway, we further obtained mechanistic insight into potential sources of response variability. Our analysis indicates that in both intracellular calcium and NFκB signaling, response variability is consistent with extrinsic noise (cell-to-cell variability in protein levels), a short-term memory of stimulation, and high Hill coefficient processes. Furthermore, these results support recent works that have emphasized the role of deterministic processes for explaining apparently stochastic cellular response variability and indicate that even weak stimulations likely guide mammalian cells to appropriate fates rather than leaving outcomes to chance. We envision that the rest-period test can be applied to other signaling pathways to extract mechanistic insight.


Subject(s)
Electric Stimulation , Signal Transduction , Calcium/metabolism , HEK293 Cells , Humans , Kinetics , Lab-On-A-Chip Devices , Models, Biological , NF-kappa B/metabolism , Stochastic Processes , Tumor Necrosis Factor-alpha/metabolism
14.
Mol Pharmacol ; 96(6): 683-691, 2019 12.
Article in English | MEDLINE | ID: mdl-31543506

ABSTRACT

Regulators of G-protein signaling (RGS) proteins modulate receptor signaling by binding to activated G-protein α-subunits, accelerating GTP hydrolysis. Selective inhibition of RGS proteins increases G-protein activity and may provide unique tissue specificity. Thiadiazolidinones (TDZDs) are covalent inhibitors that act on cysteine residues to inhibit RGS4, RGS8, and RGS19. There is a correlation between protein flexibility and potency of inhibition by the TDZD 4-[(4- fluorophenyl)methyl]-2-(4-methylphenyl)-1,2,4-thiadiazolidine-3,5-dione (CCG-50014). In the context of a single conserved cysteine residue on the α 4 helix, RGS19 is the most flexible and most potently inhibited by CCG-50014, followed by RGS4 and RGS8. In this work, we identify residues responsible for differences in both flexibility and potency of inhibition among RGS isoforms. RGS19 lacks a charged residue on the α 4 helix that is present in RGS4 and RGS8. Introducing a negative charge at this position (L118D) increased the thermal stability of RGS19 and decreased the potency of inhibition of CCG-50014 by 8-fold. Mutations eliminating salt bridge formation in RGS8 and RGS4 decreased thermal stability in RGS8 and increased potency of inhibition of both RGS4 and RGS8 by 4- and 2-fold, respectively. Molecular dynamics simulations with an added salt bridge in RGS19 (L118D) showed reduced RGS19 flexibility. Hydrogen-deuterium exchange studies showed striking differences in flexibility in the α 4 helix of RGS4, 8, and 19 with salt bridge-modifying mutations. These results show that the α 4 salt bridge-forming residue controls flexibility in several RGS isoforms and supports a causal relationship between RGS flexibility and the potency of TDZD inhibitors. SIGNIFICANCE STATEMENT: Inhibitor potency is often viewed in relation to the static structure of a target protein binding pocket. Using both experimental and computation studies we assess determinants of dynamics and inhibitor potency for three different RGS proteins. A single salt bridge-forming residue determines differences in flexibility between RGS isoforms; mutations either increase or decrease protein motion with correlated alterations in inhibitor potency. This strongly suggests a causal relationship between RGS protein flexibility and covalent inhibitor potency.


Subject(s)
RGS Proteins/antagonists & inhibitors , RGS Proteins/chemistry , Amino Acid Sequence , Protein Structure, Secondary , RGS Proteins/genetics , Thiazolidinediones/pharmacology
15.
Mol Pharmacol ; 96(6): 826-834, 2019 12.
Article in English | MEDLINE | ID: mdl-31645376

ABSTRACT

Regulator of G protein signaling 2 (RGS2) plays a role in reducing vascular contraction and promoting relaxation due to its GTPase accelerating protein activity toward Gαq. Previously, we identified four human loss-of-function (LOF) mutations in RGS2 (Q2L, D40Y, R44H, and R188H). This study aimed to investigate whether those RGS2 LOF mutations disrupt the ability of RGS2 to regulate vascular reactivity. Isolated mesenteric arteries (MAs) from RGS2-/- mice showed an elevated contractile response to 5 nM angiotensin II and a loss of acetylcholine (ACh)-mediated vasodilation. Reintroduction of a wild-type (WT) RGS2-GFP plasmid into RGS2-/- MAs suppressed the vasoconstrictor response to angiotensin II. RGS2 LOF mutants failed to suppress the angiotensin II constriction response compared with RGS2 WT. In contrast, ACh-mediated vasoconstriction was restored by expression of RGS2 WT, D40Y, and R44H but not by RGS2 Q2L or R188H. Phosphorylation of RGS2 D40Y and R44H by protein kinase G (PKG) may explain their maintained function to support relaxation in MAs. This is supported by phosphomimetic mutants and suppression of vasorelaxation mediated by RGS2 D40Y by a PKG inhibitor. These results demonstrate that RGS2 attenuates vasoconstriction in MAs and that RGS2 LOF mutations cannot carry out this effect. Among them, the Q2L and R188H mutants supported less relaxation to ACh, whereas relaxation mediated by the D40Y and R44H mutant proteins was equal to that with WT protein. Phosphorylation of RGS2 by PKG appears to contribute to this vasorelaxation. These results provide insights for precision medicine targeting the rare individuals carrying these RGS2 mutations. SIGNIFICANCE STATEMENT: Regulator of G protein signaling 2 (RGS2) has been implicated in the control of blood pressure; rare mutations in the RGS2 gene have been identified in large-scale human gene sequencing studies. Four human mutations in RGS2 that cause loss of function (LOF) in cell-based assays were examined in isolated mouse arteries for effects on both vasoconstriction and vasodilation. All mutants showed the expected LOF effects in suppressing vasoconstriction. Surprisingly, the D40Y and R44H mutant RGS2 showed normal control of vasodilation. We propose that this is due to rescue of the mislocalization phenotype of these two mutants by nitric oxide-mediated/protein kinase G-dependent phosphorylation. These mechanisms may guide drug discovery or drug repurposing efforts for hypertension by enhancing RGS2 function.


Subject(s)
Loss of Function Mutation/physiology , RGS Proteins/genetics , RGS Proteins/metabolism , Vasoconstriction/physiology , Vasoconstrictor Agents/pharmacology , Animals , Aorta/drug effects , Aorta/physiology , CHO Cells , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Loss of Function Mutation/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Structure, Secondary , RGS Proteins/chemistry , Vasoconstriction/drug effects
16.
Proteins ; 87(2): 146-156, 2019 02.
Article in English | MEDLINE | ID: mdl-30521141

ABSTRACT

Regulator of G protein signaling (RGS) proteins play a pivotal role in regulation of G protein-coupled receptor (GPCR) signaling and are therefore becoming an increasingly important therapeutic target. Recently discovered thiadiazolidinone (TDZD) compounds that target cysteine residues have shown different levels of specificities and potencies for the RGS4 protein, thereby suggesting intrinsic differences in dynamics of this protein upon binding of these compounds. In this work, we investigated using atomistic molecular dynamics (MD) simulations the effect of binding of several small-molecule inhibitors on perturbations and dynamical motions in RGS4. Specifically, we studied two conformational models of RGS4 in which a buried cysteine residue is solvent-exposed due to side-chain motions or due to flexibility in neighboring helices. We found that TDZD compounds with aromatic functional groups perturb the RGS4 structure more than compounds with aliphatic functional groups. Moreover, small-molecules with aromatic functional groups but lacking sulfur atoms only transiently reside within the protein and spontaneously dissociate to the solvent. We further measured inhibitory effects of TDZD compounds using a protein-protein interaction assay on a single-cysteine RGS4 protein showing trends in potencies of compounds consistent with our simulation studies. Thermodynamic analyses of RGS4 conformations in the apo-state and on binding to TDZD compounds revealed links between both conformational models of RGS4. The exposure of cysteine side-chains appears to facilitate initial binding of TDZD compounds followed by migration of the compound into a bundle of four helices, thereby causing allosteric perturbations in the RGS/Gα protein-protein interface.


Subject(s)
Cysteine/chemistry , GTP-Binding Proteins/chemistry , Molecular Dynamics Simulation , RGS Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , Small Molecule Libraries/chemistry , Animals , Cysteine/metabolism , GTP-Binding Proteins/metabolism , Humans , Molecular Conformation , Protein Binding/drug effects , Protein Domains , Protein Structure, Secondary , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/metabolism
17.
J Am Chem Soc ; 140(9): 3454-3460, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29460621

ABSTRACT

Small-molecule inhibitor selectivity may be influenced by variation in dynamics among members of a protein family. Regulator of G-protein Signaling (RGS) proteins are a family that plays a key role in G-Protein Coupled Receptor (GPCR) signaling by binding to active Gα subunits and accelerating GTP hydrolysis, thereby terminating activity. Thiadiazolidinones (TDZDs) inhibit the RGS-Gα interaction by covalent modification of cysteine residues in RGS proteins. Some differences in specificity may be explained by differences in the complement of cysteines among RGS proteins. However, key cysteines shared by RGS proteins inhibited by TDZDs are not exposed on the protein surface, and differences in potency exist among RGS proteins containing only buried cysteines. We hypothesize that differential exposure of buried cysteine residues among RGS proteins partially drives TDZD selectivity. Hydrogen-deuterium exchange (HDX) studies and molecular dynamics (MD) simulations were used to probe the dynamics of RGS4, RGS8, and RGS19, three RGS proteins inhibited at a range of potencies by TDZDs. When these proteins were mutated to contain a single, shared cysteine, RGS19 was found to be most potently inhibited. HDX studies revealed differences in α4 and α6 helix flexibility among RGS isoforms, with particularly high flexibility in RGS19. This could cause differences in cysteine exposure and lead to differences in potency of TDZD inhibition. MD simulations of RGS proteins revealed motions that correspond to solvent exposure observed in HDX, providing further evidence for a role of protein dynamics in TDZD selectivity.


Subject(s)
RGS Proteins/antagonists & inhibitors , RGS Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Animals , Humans , Molecular Dynamics Simulation , Protein Conformation/drug effects , Protein Interaction Maps/drug effects , RGS Proteins/chemistry , Signal Transduction/drug effects
18.
Neurobiol Dis ; 116: 131-141, 2018 08.
Article in English | MEDLINE | ID: mdl-29758257

ABSTRACT

Mutations in the GNAO1 gene cause a complex constellation of neurological disorders including epilepsy, developmental delay, and movement disorders. GNAO1 encodes Gαo, the α subunit of Go, a member of the Gi/o family of heterotrimeric G protein signal transducers. Go is the most abundant membrane protein in the mammalian central nervous system and plays major roles in synaptic neurotransmission and neurodevelopment. GNAO1 mutations were first reported in early infantile epileptic encephalopathy 17 (EIEE17) but are also associated with a more common syndrome termed neurodevelopmental disorder with involuntary movements (NEDIM). Here we review a mechanistic model in which loss-of-function (LOF) GNAO1 alleles cause epilepsy and gain-of-function (GOF) alleles are primarily associated with movement disorders. We also develop a signaling framework related to cyclic AMP (cAMP), synaptic vesicle release, and neural development and discuss gene mutations perturbing those mechanisms in a range of genetic movement disorders. Finally, we analyze clinical reports of patients carrying GNAO1 mutations with respect to their symptom onset and discuss pharmacological/surgical treatments in the context of our mechanistic model.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Movement Disorders/genetics , Movement Disorders/metabolism , Mutation/genetics , Animals , Humans
19.
J Nanobiotechnology ; 16(1): 97, 2018 Nov 27.
Article in English | MEDLINE | ID: mdl-30482196

ABSTRACT

BACKGROUND: Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo. RESULTS: The vesicles were spherical particles of around 130 nm and were strongly cationic. A large amount of inhibitor could be incorporated into the vesicles. We showed that the nanocarrier CCG-222740 formulation gradually released the inhibitor over 14 days using high performance liquid chromatography. Nanocarrier CCG-222740 significantly decreased ACTA2 gene expression and was not cytotoxic in human conjunctival fibroblasts. In vivo, nanocarrier CCG-222740 doubled the bleb survival from 11.0 ± 0.6 days to 22.0 ± 1.3 days (p = 0.001), decreased conjunctival scarring and did not have any local or systemic adverse effects in a rabbit model of glaucoma filtration surgery. CONCLUSIONS: Our study demonstrates proof-of-concept that a nanocarrier-based formulation efficiently achieves a sustained release of a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor and prevents conjunctival fibrosis in an established rabbit model of glaucoma filtration surgery.


Subject(s)
Delayed-Action Preparations/chemistry , Drug Delivery Systems , Serum Response Factor/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Animals , Conjunctival Diseases/drug therapy , Female , Fibroblasts/drug effects , Fibrosis/drug therapy , Humans , Liposomes/chemistry , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Rabbits , Tissue Distribution , Trans-Activators/antagonists & inhibitors , Trans-Activators/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL