Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
PLoS Pathog ; 18(8): e1010731, 2022 08.
Article in English | MEDLINE | ID: mdl-35960787

ABSTRACT

Children are particularly susceptible to typhoid fever caused by the bacterial pathogen Salmonella Typhi. Typhoid fever is prevalent in developing countries where diets can be less well-balanced. Here, using a murine model, we investigated the role of the macronutrient composition of the diet in maternal vaccination efficacies of two subunit vaccines targeting typhoid toxin: ToxoidVac and PltBVac. We found that maternal vaccinations protected all offspring against a lethal-dose typhoid toxin challenge in a balanced, normal diet (ND) condition, but the declined protection in a malnourished diet (MD) condition was observed in the PltBVac group. Despite the comparable antibody titers in both MD and ND mothers, MD offspring had a significantly lower level of typhoid toxin neutralizing antibodies than their ND counterparts. We observed a lower expression of the neonatal Fc receptor on the yolk sac of MD mothers than in ND mothers, agreeing with the observed lower antibody titers in MD offspring. Protein supplementation to MD diets, but not fat supplementation, increased FcRn expression and protected all MD offspring from the toxin challenge. Similarly, providing additional typhoid toxin-neutralizing antibodies to MD offspring was sufficient to protect all MD offspring from the toxin challenge. These results emphasize the significance of balanced/normal diets for a more effective maternal vaccination transfer to their offspring.


Subject(s)
Malnutrition , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Animals , Antibodies, Neutralizing , Child , Humans , Malnutrition/prevention & control , Mice , Salmonella typhi , Typhoid Fever/microbiology , Vaccination
2.
Infect Immun ; 90(2): e0051521, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34898253

ABSTRACT

Typhoid toxin is secreted by the typhoid fever-causing bacterial pathogen Salmonella enterica serovar Typhi and has tropism for immune cells and brain endothelial cells. Here, we generated a camelid single-domain antibody (VHH) library from typhoid toxoid-immunized alpacas and identified 41 VHHs selected on the glycan receptor-binding PltB and nuclease CdtB. VHHs exhibiting potent in vitro neutralizing activities from each sequence-based family were epitope binned via competition enzyme-linked immunosorbent assays (ELISAs), leading to 6 distinct VHHs, 2 anti-PltBs (T2E7 and T2G9), and 4 anti-CdtB VHHs (T4C4, T4C12, T4E5, and T4E8), whose in vivo neutralizing activities and associated toxin-neutralizing mechanisms were investigated. We found that T2E7, T2G9, and T4E5 effectively neutralized typhoid toxin in vivo, as demonstrated by 100% survival of mice administered a lethal dose of typhoid toxin and with little to no typhoid toxin-mediated upper motor function defect. Cumulatively, these results highlight the potential of the compact antibodies to neutralize typhoid toxin by targeting the glycan-binding and/or nuclease subunits.


Subject(s)
Camelids, New World , Single-Domain Antibodies , Typhoid Fever , Animals , Endothelial Cells , Mice , Polysaccharides , Salmonella typhi , Typhoid Fever/microbiology
3.
Biochemistry ; 58(2): 126-136, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30353723

ABSTRACT

Bacteria must acquire the essential element zinc from extremely limited environments, and this function is performed largely by ATP binding cassette (ABC) transporters. These systems rely on a periplasmic or extracellular solute binding protein (SBP) to bind zinc specifically with a high affinity and deliver it to the membrane permease for import into the cytoplasm. However, zinc acquisition systems in bacteria may be more complex, involving multiple transporters and other periplasmic or extracellular zinc binding proteins. Here we describe the zinc acquisition functions of two zinc SBPs (ZnuA and AztC) and a novel periplasmic metallochaperone (AztD) in Paracoccus denitrificans. ZnuA was characterized in vitro and demonstrated to bind as many as 5 zinc ions with a high affinity. It does not interact with AztD, in contrast to what has been demonstrated for AztC, which is able to acquire a single zinc ion through associative transfer from AztD. Deletions of the corresponding genes singly and in combination show that either AztC or ZnuA is sufficient and essential for robust growth in zinc-limited media. Although AztD cannot support transport of zinc into the cytoplasm, it likely functions to store zinc in the periplasm for transfer through the AztABCD system.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Metallochaperones/metabolism , Paracoccus denitrificans/metabolism , Periplasm/metabolism , Zinc/metabolism , ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , Calorimetry/methods , Cytoplasm/metabolism , Metallochaperones/genetics , Mutation , Paracoccus denitrificans/genetics , Paracoccus denitrificans/growth & development
4.
J Biol Chem ; 292(42): 17496-17505, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28887302

ABSTRACT

Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics.


Subject(s)
Bacterial Proteins/chemistry , Metalloproteins/chemistry , Molecular Chaperones/chemistry , Paracoccus denitrificans/chemistry , Zinc/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Crystallography, X-Ray , Metalloproteins/genetics , Metalloproteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Paracoccus denitrificans/genetics , Paracoccus denitrificans/metabolism , Protein Structure, Quaternary , Protein Structure, Secondary , Zinc/metabolism
5.
J Biol Chem ; 290(50): 29984-92, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26468286

ABSTRACT

Bacterial ATP-binding cassette (ABC) transporters of transition metals are essential for acquisition of necessary elements from the environment. A large number of Gram-negative bacteria, including human pathogens, have a fourth conserved gene of unknown function adjacent to the canonical permease, ATPase, and solute-binding protein (SBP) genes of the AztABC zinc transporter system. To assess the function of this putative accessory factor (AztD) from Paracoccus denitrificans, we have analyzed its transcriptional regulation, metal binding properties, and interaction with the SBP (AztC). Transcription of the aztD gene is significantly up-regulated under conditions of zinc starvation. Recombinantly expressed AztD purifies with slightly substoichiometric zinc from the periplasm of Escherichia coli and is capable of binding up to three zinc ions with high affinity. Size exclusion chromatography and a simple intrinsic fluorescence assay were used to determine that AztD as isolated is able to transfer bound zinc nearly quantitatively to apo-AztC. Transfer occurs through a direct, associative mechanism that prevents loss of metal to the solvent. These results indicate that AztD is a zinc chaperone to AztC and likely functions to maintain zinc homeostasis through interaction with the AztABC system. This work extends our understanding of periplasmic zinc trafficking and the function of chaperones in this process.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/metabolism , Molecular Chaperones/metabolism , Paracoccus denitrificans/metabolism , Periplasm/metabolism , Zinc/metabolism , Circular Dichroism , Protein Binding , Spectrometry, Fluorescence
6.
J Biol Chem ; 290(19): 11878-89, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25787075

ABSTRACT

ATP-binding cassette (ABC) transporters of the cluster 9 family are ubiquitous among bacteria and essential for acquiring Zn(2+) and Mn(2+) from the environment or, in the case of pathogens, from the host. These rely on a substrate-binding protein (SBP) to coordinate the relevant metal with high affinity and specificity and subsequently release it to a membrane permease for translocation into the cytoplasm. Although a number of cluster 9 SBP structures have been determined, the structural attributes conferring Zn(2+) or Mn(2+) specificity remain ambiguous. Here we describe the gene expression profile, in vitro metal binding properties, and crystal structure of a new cluster 9 SBP from Paracoccus denitrificans we have called AztC. Although all of our results strongly indicate Zn(2+) over Mn(2+) specificity, the Zn(2+) ion is coordinated by a conserved Asp residue only observed to date as a metal ligand in Mn(2+)-specific SBPs. The unusual sequence properties of this protein are shared among close homologues, including members from the human pathogens Klebsiella pneumonia and Enterobacter aerogenes, and would seem to suggest a subclass of Zn(2+)-specific transporters among the cluster 9 family. In any case, the unusual coordination environment of AztC expands the already considerable range of those available to Zn(2+)-specific SBPs and highlights the presence of a His-rich loop as the most reliable indicator of Zn(2+) specificity.


Subject(s)
Bacterial Proteins/metabolism , Cation Transport Proteins/metabolism , Metals/chemistry , Paracoccus denitrificans/metabolism , Zinc/chemistry , Amino Acid Sequence , Binding Sites , Circular Dichroism , Gene Expression Profiling , Manganese/chemistry , Molecular Sequence Data , Phylogeny , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
7.
Subst Use Misuse ; 49(7): 798-803, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24491150

ABSTRACT

Tobacco consumption is high amongst the people of Xxx. This study was carried out in 2011 in a rural community of Xxx, to compare pathological parameters associated with tobacco use in relation to nicotine metabolism between smokers, chewers, and a control group. A total of 216 volunteers provided blood and urine samples for testing nicotine metabolites, C-reactive protein, and cell counts. Data were analyzed using ANOVA, correlation, and t-tests using STATA. Differences in blood pressure amongst the groups indicate a role of smoking in preventing a rise in BP with age, likely attributable to a different mechanism of metabolism of tobacco constituents.


Subject(s)
Blood Pressure , C-Reactive Protein/immunology , Cotinine/urine , Nicotine/metabolism , Smoking/physiopathology , Adult , Aged , Case-Control Studies , Female , Humans , Inflammation/immunology , Male , Middle Aged , Nepal , Rural Population , Smoking/immunology , Smoking/metabolism , Tobacco Use/immunology , Tobacco Use/metabolism , Tobacco Use/physiopathology , Young Adult
8.
Pathogens ; 10(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915749

ABSTRACT

Enteric fever is a life-threatening systemic febrile disease caused by Salmonella enterica serovars Typhi and Paratyphi (S. Typhi and S. Paratyphi). Unfortunately, the burden of the disease remains high primarily due to the global spread of various drug-resistant Salmonella strains despite continuous advancement in the field. An accurate diagnosis is critical for effective control of the disease. However, enteric fever diagnosis based on clinical presentations is challenging due to overlapping symptoms with other febrile illnesses that are also prevalent in endemic areas. Current laboratory tests display suboptimal sensitivity and specificity, and no diagnostic methods are available for identifying asymptomatic carriers. Several research programs have employed systemic approaches to identify more specific biomarkers for early detection and asymptomatic carrier detection. This review discusses the pros and cons of currently available diagnostic tests for enteric fever, the advancement of research toward improved diagnostic tests, and the challenges of discovering new ideal biomarkers and tests.

9.
iScience ; 24(5): 102454, 2021 May 21.
Article in English | MEDLINE | ID: mdl-34113815

ABSTRACT

Nearly all clinical isolates of Salmonella Typhi, the cause of typhoid fever, are antibiotic resistant. All S. Typhi isolates secrete an A2B5 exotoxin called typhoid toxin to benefit the pathogen during infection. Here, we demonstrate that antibiotic-resistant S. Typhi secretes typhoid toxin continuously during infection regardless of antibiotic treatment. We characterize typhoid toxin antibodies targeting glycan-receptor-binding PltB or nuclease CdtB, which neutralize typhoid toxin in vitro and in vivo, as demonstrated by using typhoid toxin secreted by antibiotic-resistant S. Typhi during human cell infection and lethal dose typhoid toxin challenge to mice. TyTx11 generated in this study neutralizes typhoid toxin effectively, comparable to TyTx4 that binds to all PltB subunits available per holotoxin. Cryoelectron microscopy explains that the binding of TyTx11 to CdtB makes this subunit inactive through CdtB catalytic-site conformational change. The identified toxin-neutralizing epitopes are conserved across all S. Typhi clinical isolates, offering critical insights into typhoid toxin-neutralizing strategies.

10.
PLoS One ; 16(9): e0257744, 2021.
Article in English | MEDLINE | ID: mdl-34582469

ABSTRACT

Sepsis is a syndromic response to infections and is becoming an emerging threat to the public health sector, particularly in developing countries. Salmonella Typhi (S. Typhi), the cause of typhoid fever, is one primary cause of pediatric sepsis in typhoid endemic areas. Extensively drug-resistant (XDR) S. Typhi is more common among pediatric patients, which is responsible for over 90% of the reported XDR typhoid cases, but the majority of antibiotic resistance studies available have been carried out using S. Typhi isolates from adult patients. Here, we characterized antibiotic-resistance profiles of XDR S. Typhi isolates from a medium size cohort of pediatric typhoid patients (n = 45, 68.89% male and 31.11% female) and determined antibiotic-resistance-related gene signatures associated with common treatment options to typhoid fever patients of 18 XDR S. Typhi representing all 45 isolates. Their ages were 1-13 years old: toddlers aging 1-2 years old (n = 9, 20%), pre-schoolers aging 3-5 years old (n = 17, 37.78%), school-age children aging 6-12 years old (n = 17, 37.78%), and adolescents aging 13-18 years old (n = 2, 4.44%). Through analyzing blaTEM1, dhfR7, sul1, and catA1genes for multidrug-resistance, qnrS, gyrA, gyrB, parC, and parE for fluoroquinolone-resistance, blaCTX-M-15 for XDR, and macAB and acrAB efflux pump system-associated genes, we showed the phenotype of the XDR S. Typhi isolates matches with their genotypes featured by the acquisitions of the genes blaTEM1, dhfR7, sul1, catA1, qnrS, and blaCTX-M-15 and a point mutation on gyrA. This study informs the molecular basis of antibiotic-resistance among recent S. Typhi isolates from pediatric septicemia patients, therefore providing insights into the development of molecular detection methods and treatment strategies for XDR S. Typhi.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial , Salmonella typhi/isolation & purification , Sepsis/microbiology , Typhoid Fever/diagnosis , Adolescent , Anti-Bacterial Agents/pharmacology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Point Mutation , Salmonella typhi/drug effects , Salmonella typhi/genetics
11.
Cell Rep ; 36(10): 109654, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34496256

ABSTRACT

Many bacterial pathogens secrete A(2)B5 toxins comprising two functionally distinct yet complementary "A" and "B" subunits to benefit the pathogens during infection. The lectin-like pentameric B subunits recognize specific sets of host glycans to deliver the toxin into target host cells. Here, we offer the molecular mechanism by which neutralizing antibodies, which have the potential to bind to all glycan-receptor binding sites and thus completely inhibit toxin binding to host cells, are inhibited from exerting this action. Cryogenic electron microscopy (cryo-EM)-based analyses indicate that the skewed positioning of the toxin A subunit(s) toward one side of the toxin B pentamer inhibited neutralizing antibody binding to the laterally located epitopes, rendering some glycan-receptor binding sites that remained available for the toxin binding and endocytosis process, which is strikingly different from the counterpart antibodies recognizing the far side-located epitopes. These results highlight additional features of the toxin-antibody interactions and offer important insights into anti-toxin strategies.


Subject(s)
Bacterial Toxins/metabolism , Polysaccharides/metabolism , Protein Binding/physiology , Salmonella/metabolism , Animals , Antibodies, Neutralizing/immunology , Bacterial Proteins/metabolism , Binding Sites/physiology , Humans , Mice , Salmonella typhi/pathogenicity , Typhoid Fever/microbiology
12.
Front Microbiol ; 8: 569, 2017.
Article in English | MEDLINE | ID: mdl-28443074

ABSTRACT

Zinc homeostasis is critical for bacterial survival and is mediated largely at the transcriptional level by the regulation of zinc uptake and efflux genes. Here we use RNA-seq to assess transcriptional changes as a result of zinc limitation in the denitrifying bacterium Paracoccus denitrificans. The results identify the differential expression of 147 genes, most of which were upregulated in zinc-depleted medium. Included in this set of genes are a large number of transition metal transporters, several transcription factors, and hypothetical proteins. Intriguingly, genes encoding nitric oxide reductase (norCB) and nitrite reductase (nirS) were also upregulated. A Zur consensus binding motif was identified in the promoters of the most highly upregulated genes. The zinc uptake regulator (Zur) from this organism was also characterized and shown to bind to the Zur motif in a zinc-dependent manner. This work expands our current understanding of the transcriptional response of gram-negative bacteria to zinc limitation and identifies genes involved in denitrification as part of the Zur regulon.

SELECTION OF CITATIONS
SEARCH DETAIL