Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nature ; 615(7953): 705-711, 2023 03.
Article in English | MEDLINE | ID: mdl-36922598

ABSTRACT

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Subject(s)
Sucrose , Sweetening Agents , T-Lymphocytes , Animals , Mice , Sucrose/analogs & derivatives , Sweetening Agents/administration & dosage , Sweetening Agents/adverse effects , Sweetening Agents/pharmacology , Sweetening Agents/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Food Safety , Calcium Signaling/drug effects , Receptors, Antigen, T-Cell/drug effects , Receptors, Antigen, T-Cell/immunology , Bacterial Infections/immunology , Neoplasms/immunology , Autoimmunity/drug effects , Autoimmunity/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology
2.
Angew Chem Int Ed Engl ; 59(41): 18194-18200, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32603009

ABSTRACT

OrbiSIMS is a recently developed instrument for label-free imaging of chemicals with micron spatial resolution and high mass resolution. We report a cryogenic workflow for OrbiSIMS (Cryo-OrbiSIMS) that improves chemical detection of lipids and other biomolecules in tissues. Cryo-OrbiSIMS boosts ionization yield and decreases ion-beam induced fragmentation, greatly improving the detection of biomolecules such as triacylglycerides. It also increases chemical coverage to include molecules with intermediate or high vapor pressures, such as free fatty acids and semi-volatile organic compounds (SVOCs). We find that Cryo-OrbiSIMS reveals the hitherto unknown localization patterns of SVOCs with high spatial and chemical resolution in diverse plant, animal, and human tissues. We also show that Cryo-OrbiSIMS can be combined with genetic analysis to identify enzymes regulating SVOC metabolism. Cryo-OrbiSIMS is applicable to high resolution imaging of a wide variety of non-volatile and semi-volatile molecules across many areas of biomedicine.


Subject(s)
Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Cold Temperature , History, 15th Century
3.
Biochem J ; 475(11): 1909-1937, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29626155

ABSTRACT

In all living organisms, coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. A novel unconventional function of CoA in redox regulation has been recently discovered in mammalian cells and termed protein CoAlation. Here, we report for the first time that protein CoAlation occurs at a background level in exponentially growing bacteria and is strongly induced in response to oxidizing agents and metabolic stress. Over 12% of Staphylococcus aureus gene products were shown to be CoAlated in response to diamide-induced stress. In vitro CoAlation of S. aureus glyceraldehyde-3-phosphate dehydrogenase was found to inhibit its enzymatic activity and to protect the catalytic cysteine 151 from overoxidation by hydrogen peroxide. These findings suggest that in exponentially growing bacteria, CoA functions to generate metabolically active thioesters, while it also has the potential to act as a low-molecular-weight antioxidant in response to oxidative and metabolic stress.


Subject(s)
Antioxidants/metabolism , Bacterial Proteins/metabolism , Coenzyme A/metabolism , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Coenzyme A/genetics , Diamide/pharmacology , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Oxidation-Reduction , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics
4.
Biochem J ; 474(14): 2489-2508, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28341808

ABSTRACT

Coenzyme A (CoA) is an obligatory cofactor in all branches of life. CoA and its derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. Abnormal biosynthesis and homeostasis of CoA and its derivatives have been associated with various human pathologies, including cancer, diabetes and neurodegeneration. Using an anti-CoA monoclonal antibody and mass spectrometry, we identified a wide range of cellular proteins which are modified by covalent attachment of CoA to cysteine thiols (CoAlation). We show that protein CoAlation is a reversible post-translational modification that is induced in mammalian cells and tissues by oxidising agents and metabolic stress. Many key cellular enzymes were found to be CoAlated in vitro and in vivo in ways that modified their activities. Our study reveals that protein CoAlation is a widespread post-translational modification which may play an important role in redox regulation under physiological and pathophysiological conditions.


Subject(s)
Coenzyme A/metabolism , Proteins/metabolism , Animals , Cysteine/metabolism , HEK293 Cells , Hep G2 Cells , Humans , Kidney/metabolism , Liver/metabolism , Male , Myocardium/metabolism , Organ Specificity , Oxidation-Reduction , Oxidative Stress , Protein Processing, Post-Translational , Rabbits , Rats, Sprague-Dawley , Sulfhydryl Compounds/metabolism
5.
Nat Commun ; 8(1): 1384, 2017 11 09.
Article in English | MEDLINE | ID: mdl-29123106

ABSTRACT

Early-life nourishment exerts long-term influences upon adult physiology and disease risk. These lasting effects of diet are well established but the underlying mechanisms are only partially understood. Here we show that restricting dietary yeast during Drosophila development can, depending upon the subsequent adult environment, more than double median lifespan. Developmental diet acts via a long-term influence upon the adult production of toxic molecules, which we term autotoxins, that are shed into the environment and shorten the lifespan of both sexes. Autotoxins are synthesised by oenocytes and some of them correspond to alkene hydrocarbons that also act as pheromones. This study identifies a mechanism by which the developmental dietary history of an animal regulates its own longevity and that of its conspecific neighbours. It also has important implications for the design of lifespan experiments as autotoxins can influence the regulation of longevity by other factors including diet, sex, insulin signalling and population density.


Subject(s)
Alkenes/metabolism , Diet , Drosophila melanogaster/physiology , Longevity/physiology , Alkenes/chemistry , Animals , Animals, Genetically Modified , Drosophila melanogaster/cytology , Female , Housing, Animal , Insulin/metabolism , Larva/growth & development , Lipid Metabolism/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL