Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 598(7881): 473-478, 2021 10.
Article in English | MEDLINE | ID: mdl-34646017

ABSTRACT

The progression of chronic liver disease to hepatocellular carcinoma is caused by the acquisition of somatic mutations that affect 20-30 cancer genes1-8. Burdens of somatic mutations are higher and clonal expansions larger in chronic liver disease9-13 than in normal liver13-16, which enables positive selection to shape the genomic landscape9-13. Here we analysed somatic mutations from 1,590 genomes across 34 liver samples, including healthy controls, alcohol-related liver disease and non-alcoholic fatty liver disease. Seven of the 29 patients with liver disease had mutations in FOXO1, the major transcription factor in insulin signalling. These mutations affected a single hotspot within the gene, impairing the insulin-mediated nuclear export of FOXO1. Notably, six of the seven patients with FOXO1S22W hotspot mutations showed convergent evolution, with variants acquired independently by up to nine distinct hepatocyte clones per patient. CIDEB, which regulates lipid droplet metabolism in hepatocytes17-19, and GPAM, which produces storage triacylglycerol from free fatty acids20,21, also had a significant excess of mutations. We again observed frequent convergent evolution: up to fourteen independent clones per patient with CIDEB mutations and up to seven clones per patient with GPAM mutations. Mutations in metabolism genes were distributed across multiple anatomical segments of the liver, increased clone size and were seen in both alcohol-related liver disease and non-alcoholic fatty liver disease, but rarely in hepatocellular carcinoma. Master regulators of metabolic pathways are a frequent target of convergent somatic mutation in alcohol-related and non-alcoholic fatty liver disease.


Subject(s)
Liver Diseases/genetics , Liver Diseases/metabolism , Liver/metabolism , Mutation/genetics , Active Transport, Cell Nucleus/genetics , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Chronic Disease , Cohort Studies , Fatty Acids, Nonesterified/metabolism , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Insulin Resistance , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Male , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism
2.
Hepatology ; 78(1): 212-224, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36181700

ABSTRACT

BACKGROUND AND AIMS: Relative roles of HSCs and portal fibroblasts in alcoholic hepatitis (AH) are unknown. We aimed to identify subpopulations of collagen type 1 alpha 1 (Col1a1)-expressing cells in a mouse AH model by single-cell RNA sequencing (scRNA-seq) and filtering the cells with the HSC (lecithin retinol acyltransferase [Lrat]) and portal fibroblast (Thy-1 cell surface antigen [Thy1] and fibulin 2 [Fbln2]) markers and vitamin A (VitA) storage. APPROACH AND RESULTS: Col1a1-green fluorescent protein (GFP) mice underwent AH, CCl 4 , and bile duct ligation (BDL) procedures to have comparable F1-F2 liver fibrosis. Col1a1-expressing cells were sorted via FACS by VitA autofluorescence and GFP for single-cell RNA sequencing. In AH, approximately 80% of Lrat+Thy1-Fbln2- activated HSCs were VitA-depleted (vs. ~13% in BDL and CCl 4 ). Supervised clustering identified a subset co-expressing Lrat and Fbln2 (Lrat+Fbln2+), which expanded 44-fold, 17-fold, and 1.3-fold in AH, BDL, and CCl 4 . Lrat+Fbln2+ cells had 3-15-times inductions of profibrotic, myofibroblastic, and immunoregulatory genes versus Lrat+Fbln2- cells, but 2-4-times repressed HSC-selective genes. AH activated HSCs had up-regulated inflammatory (chemokine [C-X-C motif] ligand 2 [Cxcl2], chemokine [C-C motif] ligand 2), antimicrobial (Il-33, Zc3h12a), and antigen presentation (H2-Q6, H2-T23) genes versus BDL and CCl 4 . Computational deconvolution of AH versus normal human bulk-liver RNA-sequencing data supported an expansion of LRAT+FBLN2+ cells in AH; AH patient liver immunohistochemistry showed FBLN2 staining along fibrotic septa enriched with LRAT+ cells; and in situ hybridization confirmed co-expression of FBLN2 with CXCL2 and/or human leukocyte antigen E in patient AH. Finally, HSC tracing in Lrat-Cre;Rosa26mTmG mice detected GFP+FBLN2+ cells in AH. CONCLUSION: A highly profibrotic, inflammatory, and immunoregulatory Lrat+Fbln2+ subpopulation emerges from HSCs in AH and may contribute to the inflammatory and immunoreactive nature of AH.


Subject(s)
Hepatitis, Alcoholic , Mice , Humans , Animals , Hepatitis, Alcoholic/pathology , Ligands , Hepatic Stellate Cells/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Acyltransferases/metabolism , Disease Models, Animal
3.
Nature ; 553(7689): 515-520, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29342133

ABSTRACT

The transcription factor Myc is essential for the regulation of haematopoietic stem cells and progenitors and has a critical function in haematopoietic malignancies. Here we show that an evolutionarily conserved region located 1.7 megabases downstream of the Myc gene that has previously been labelled as a 'super-enhancer' is essential for the regulation of Myc expression levels in both normal haematopoietic and leukaemic stem cell hierarchies in mice and humans. Deletion of this region in mice leads to a complete loss of Myc expression in haematopoietic stem cells and progenitors. This caused an accumulation of differentiation-arrested multipotent progenitors and loss of myeloid and B cells, mimicking the phenotype caused by Mx1-Cre-mediated conditional deletion of the Myc gene in haematopoietic stem cells. This super-enhancer comprises multiple enhancer modules with selective activity that recruits a compendium of transcription factors, including GFI1b, RUNX1 and MYB. Analysis of mice carrying deletions of individual enhancer modules suggests that specific Myc expression levels throughout most of the haematopoietic hierarchy are controlled by the combinatorial and additive activity of individual enhancer modules, which collectively function as a 'blood enhancer cluster' (BENC). We show that BENC is also essential for the maintenance of MLL-AF9-driven leukaemia in mice. Furthermore, a BENC module, which controls Myc expression in mouse haematopoietic stem cells and progenitors, shows increased chromatin accessibility in human acute myeloid leukaemia stem cells compared to blasts. This difference correlates with MYC expression and patient outcome. We propose that clusters of enhancers, such as BENC, form highly combinatorial systems that allow precise control of gene expression across normal cellular hierarchies and which also can be hijacked in malignancies.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation , Genes, myc/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Leukemia/genetics , Leukemia/pathology , Multigene Family/genetics , Animals , B-Lymphocytes/cytology , Cell Differentiation , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Down-Regulation , Female , Gene Deletion , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , Mice, Inbred C57BL , Multipotent Stem Cells/cytology , Myeloid Cells/cytology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Prognosis , Sequence Deletion , Survival Analysis , Transcription Factors/metabolism
4.
Nature ; 558(7711): E4, 2018 06.
Article in English | MEDLINE | ID: mdl-29769714

ABSTRACT

In the originally published version of this Letter, ref. 43 was erroneously provided twice. In the 'Estimation of relative cell-type-specific composition of AML samples' section in the Methods, the citation to ref. 43 after the GEO dataset GSE24759 is correct. However, in the 'Mice' section of the Methods, the citation to ref. 43 after 'TAMERE' should have been associated with a new reference1. The original Letter has been corrected online (with the new reference included as ref. 49).

5.
Nature ; 559(7714): 400-404, 2018 07.
Article in English | MEDLINE | ID: mdl-29988082

ABSTRACT

The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure1. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion2,3. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)4-8. Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention.


Subject(s)
Genetic Predisposition to Disease , Health , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Age Factors , Aged , Disease Progression , Electronic Health Records , Female , Humans , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Models, Genetic , Mutagenesis , Prevalence , Risk Assessment
6.
Rheumatology (Oxford) ; 62(7): 2444-2452, 2023 07 05.
Article in English | MEDLINE | ID: mdl-36469303

ABSTRACT

OBJECTIVES: This study investigates longitudinal patterns, predictors and long-term impact of pain in axial spondyloarthritis (axSpA), using clinical and self-tracking data. METHODS: The presence of multisite pain (MSP), affecting at least six of nine body regions using a Margolis pain drawing, and subsequent chronic widespread pain (CWP), MSP at more than one timepoint, was assessed in a cohort of axSpA patients. Incident MSP (MSP at two consecutive visits or more), intermittent MSP (MSP at two or more non-consecutive visits) and persistent MSP (MSP at each visit) were described. Demographic, clinical and self-tracking measures were compared for the CWP vs non-CWP groups using Students t test, Wilcoxon-Mann-Whitney and χ2 test for normal, non-normal and categorical data, respectively. Predictors of CWP were evaluated using logistic regression modelling. RESULTS: A total of 136 patients, mean clinical study duration of 120 weeks (range 27-277 weeks) were included, with sufficient self-tracking data in 97 patients. Sixty-eight (50%) patients reported MSP during at least one clinical visit: eight (6%) incident MSP; 16 (12%) persistent MSP; and 44 (32%) intermittent MSP. Forty-six (34%) of the cohort had CWP. All baseline measures of disease activity, function, quality of life, sleep disturbance, fatigue and overall activity impairment were significant predictors of the development of CWP. BASDAI and BASFI scores were significantly higher in those with CWP and self-tracking data revealed significantly worse pain, fatigue, sleep quality and stress. CONCLUSIONS: The development of CWP is predicted by higher levels of disease activity and burden at baseline. It also impacts future disease activity and wellbeing.


Subject(s)
Axial Spondyloarthritis , Chronic Pain , Humans , Cohort Studies , Quality of Life , Chronic Pain/epidemiology , Chronic Pain/etiology , Fatigue/epidemiology , Fatigue/etiology
7.
Blood ; 137(5): 661-677, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33197925

ABSTRACT

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Subject(s)
Acetamides/pharmacology , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Isoindoles/pharmacology , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Neoplasm Proteins/antagonists & inhibitors , Neoplastic Stem Cells/drug effects , Piperidones/pharmacology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Acetamides/therapeutic use , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Humans , Isoindoles/therapeutic use , Mice , Mice, Inbred NOD , Mice, SCID , Models, Molecular , Neoplastic Stem Cells/enzymology , Nuclear Factor 45 Protein/physiology , Nuclear Factor 90 Proteins/physiology , Peptide Termination Factors/metabolism , Piperidones/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Processing, Post-Translational/drug effects , Proteolysis , Small Molecule Libraries , Stress, Physiological , TOR Serine-Threonine Kinases/physiology , U937 Cells , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
8.
Nature ; 547(7661): 104-108, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28658204

ABSTRACT

In acute myeloid leukaemia, long-term survival is poor as most patients relapse despite achieving remission. Historically, the failure of therapy has been thought to be due to mutations that produce drug resistance, possibly arising as a consequence of the mutagenic properties of chemotherapy drugs. However, other lines of evidence have pointed to the pre-existence of drug-resistant cells. For example, deep sequencing of paired diagnosis and relapse acute myeloid leukaemia samples has provided direct evidence that relapse in some cases is generated from minor genetic subclones present at diagnosis that survive chemotherapy, suggesting that resistant cells are generated by evolutionary processes before treatment and are selected by therapy. Nevertheless, the mechanisms of therapy failure and capacity for leukaemic regeneration remain obscure, as sequence analysis alone does not provide insight into the cell types that are fated to drive relapse. Although leukaemia stem cells have been linked to relapse owing to their dormancy and self-renewal properties, and leukaemia stem cell gene expression signatures are highly predictive of therapy failure, experimental studies have been primarily correlative and a role for leukaemia stem cells in acute myeloid leukaemia relapse has not been directly proved. Here, through combined genetic and functional analysis of purified subpopulations and xenografts from paired diagnosis/relapse samples, we identify therapy-resistant cells already present at diagnosis and two major patterns of relapse. In some cases, relapse originated from rare leukaemia stem cells with a haematopoietic stem/progenitor cell phenotype, while in other instances relapse developed from larger subclones of immunophenotypically committed leukaemia cells that retained strong stemness transcriptional signatures. The identification of distinct patterns of relapse should lead to improved methods for disease management and monitoring in acute myeloid leukaemia. Moreover, the shared functional and transcriptional stemness properties that underlie both cellular origins of relapse emphasize the importance of developing new therapeutic approaches that target stemness to prevent relapse.


Subject(s)
Cell Lineage , Leukemia, Myeloid, Acute/pathology , Neoplasm Recurrence, Local/pathology , Neoplastic Stem Cells/pathology , Animals , Clone Cells/metabolism , Clone Cells/pathology , Female , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/genetics , Mice , Mutation , Myeloid Progenitor Cells/metabolism , Myeloid Progenitor Cells/pathology , Neoplasm Recurrence, Local/genetics , Neoplastic Stem Cells/metabolism
9.
Nature ; 540(7633): 433-437, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27926740

ABSTRACT

Refractoriness to induction chemotherapy and relapse after achievement of remission are the main obstacles to cure in acute myeloid leukaemia (AML). After standard induction chemotherapy, patients are assigned to different post-remission strategies on the basis of cytogenetic and molecular abnormalities that broadly define adverse, intermediate and favourable risk categories. However, some patients do not respond to induction therapy and another subset will eventually relapse despite the lack of adverse risk factors. There is an urgent need for better biomarkers to identify these high-risk patients before starting induction chemotherapy, to enable testing of alternative induction strategies in clinical trials. The high rate of relapse in AML has been attributed to the persistence of leukaemia stem cells (LSCs), which possess a number of stem cell properties, including quiescence, that are linked to therapy resistance. Here, to develop predictive and/or prognostic biomarkers related to stemness, we generated a list of genes that are differentially expressed between 138 LSC+ and 89 LSC- cell fractions from 78 AML patients validated by xenotransplantation. To extract the core transcriptional components of stemness relevant to clinical outcomes, we performed sparse regression analysis of LSC gene expression against survival in a large training cohort, generating a 17-gene LSC score (LSC17). The LSC17 score was highly prognostic in five independent cohorts comprising patients of diverse AML subtypes (n = 908) and contributed greatly to accurate prediction of initial therapy resistance. Patients with high LSC17 scores had poor outcomes with current treatments including allogeneic stem cell transplantation. The LSC17 score provides clinicians with a rapid and powerful tool to identify AML patients who do not benefit from standard therapy and who should be enrolled in trials evaluating novel upfront or post-remission strategies.


Subject(s)
Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/therapy , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Algorithms , Animals , Cohort Studies , Female , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mice , Prognosis , Risk Assessment , Stem Cell Transplantation , Survival Analysis , Transcriptome , Transplantation, Homologous , Treatment Outcome , Xenograft Model Antitumor Assays
10.
Blood ; 133(20): 2198-2211, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30796022

ABSTRACT

There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. A consistent effect observed for the top hits was the ability to restrain early repopulation kinetics while preserving regenerative potential. Overexpression (OE) of the most promising candidate, the orphan gene C3orf54/INKA1, in a patient-derived AML model (8227) promoted the retention of LSCs in a primitive state manifested by relative expansion of CD34+ cells, accumulation of cells in G0, and reduced output of differentiated progeny. Despite delayed early repopulation, at later times, INKA1-OE resulted in the expansion of self-renewing LSCs. In contrast, INKA1 silencing in primary AML reduced regenerative potential. Mechanistically, our multidimensional confocal analysis found that INKA1 regulates G0 exit by interfering with nuclear localization of its target PAK4, with concomitant reduction of global H4K16ac levels. These data identify INKA1 as a novel regulator of LSC latency and reveal a link between the regulation of stem cell kinetics and pool size during regeneration.


Subject(s)
Gene Expression Regulation, Leukemic , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells/metabolism , Animals , Cell Cycle Checkpoints , Cell Line, Tumor , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice, Inbred NOD , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Up-Regulation , p21-Activated Kinases/analysis
11.
Nature ; 510(7505): 422-426, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24814345

ABSTRACT

2-Oxoglutarate (2OG)-dependent oxygenases have important roles in the regulation of gene expression via demethylation of N-methylated chromatin components and in the hydroxylation of transcription factors and splicing factor proteins. Recently, 2OG-dependent oxygenases that catalyse hydroxylation of transfer RNA and ribosomal proteins have been shown to be important in translation relating to cellular growth, TH17-cell differentiation and translational accuracy. The finding that ribosomal oxygenases (ROXs) occur in organisms ranging from prokaryotes to humans raises questions as to their structural and evolutionary relationships. In Escherichia coli, YcfD catalyses arginine hydroxylation in the ribosomal protein L16; in humans, MYC-induced nuclear antigen (MINA53; also known as MINA) and nucleolar protein 66 (NO66) catalyse histidine hydroxylation in the ribosomal proteins RPL27A and RPL8, respectively. The functional assignments of ROXs open therapeutic possibilities via either ROX inhibition or targeting of differentially modified ribosomes. Despite differences in the residue and protein selectivities of prokaryotic and eukaryotic ROXs, comparison of the crystal structures of E. coli YcfD and Rhodothermus marinus YcfD with those of human MINA53 and NO66 reveals highly conserved folds and novel dimerization modes defining a new structural subfamily of 2OG-dependent oxygenases. ROX structures with and without their substrates support their functional assignments as hydroxylases but not demethylases, and reveal how the subfamily has evolved to catalyse the hydroxylation of different residue side chains of ribosomal proteins. Comparison of ROX crystal structures with those of other JmjC-domain-containing hydroxylases, including the hypoxia-inducible factor asparaginyl hydroxylase FIH and histone N(ε)-methyl lysine demethylases, identifies branch points in 2OG-dependent oxygenase evolution and distinguishes between JmjC-containing hydroxylases and demethylases catalysing modifications of translational and transcriptional machinery. The structures reveal that new protein hydroxylation activities can evolve by changing the coordination position from which the iron-bound substrate-oxidizing species reacts. This coordination flexibility has probably contributed to the evolution of the wide range of reactions catalysed by oxygenases.


Subject(s)
Eukaryota/enzymology , Models, Molecular , Oxygenases/chemistry , Prokaryotic Cells/enzymology , Ribosomes/enzymology , Amino Acid Sequence , Catalytic Domain , Conserved Sequence , Eukaryota/classification , Humans , Oxygenases/metabolism , Phylogeny , Prokaryotic Cells/classification , Protein Folding , Protein Structure, Tertiary , Sequence Alignment
12.
Cell Rep Med ; 5(4): 101507, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38631289

ABSTRACT

The precise identities of bone marrow resident cells contributing to AML relapse are not fully known. Hollands et al. report early evidence to support the existence of an aberrant monocytic cell population that appears to promote LSC expansion after cytarabine treatment.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Bone Marrow Cells , Recurrence
13.
Biotechnol Bioeng ; 110(11): 2928-37, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23740533

ABSTRACT

Recent advances in mammalian cell culture processes have significantly increased product titers, but have also resulted in substantial increases in cell density and cellular debris as well as process and product related impurities. As such, with improvements in titer, corresponding improvements in downstream processing are essential. In this study we have developed an alternative antibody harvest process that incorporates flocculation using a novel stimulus responsive polymer, benzylated poly(allylamine), followed by depth filtration. As tested on multiple antibodies, this process demonstrates high process yield, improved clearance of cells and cell debris, and efficient reduction of aggregates, host cell proteins (HCP) and DNA. A wide operating window was established for this novel flocculation process through design of experiments condition screening and optimization. Residual levels of impurities in the Protein A eluate were achieved that potentially meet requirements of drug substance and thus alleviate the burden for further impurities removal in subsequent chromatography steps. In addition, efficient clearance of residual polymer was demonstrated using a fluorescence tagged polymer in the presence of a stimulus reagent. The mechanism of HCP and aggregates removal during flocculation was also explored. This novel and efficient process can be easily integrated into current mAb purification platforms, and may overcome downstream processing challenges.


Subject(s)
Antibodies/isolation & purification , Biological Products/isolation & purification , Chemical Fractionation/methods , Filtration/methods , Flocculation , Technology, Pharmaceutical/methods , Animals , CHO Cells , Cell Culture Techniques/methods , Cricetinae , Cricetulus , Humans , Recombinant Proteins/isolation & purification
14.
Nature ; 448(7149): 87-91, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17589501

ABSTRACT

Post-translational histone modification has a fundamental role in chromatin biology and is proposed to constitute a 'histone code' in epigenetic regulation. Differential methylation of histone H3 and H4 lysyl residues regulates processes including heterochromatin formation, X-chromosome inactivation, genome imprinting, DNA repair and transcriptional regulation. The discovery of lysyl demethylases using flavin (amine oxidases) or Fe(II) and 2-oxoglutarate as cofactors (2OG oxygenases) has changed the view of methylation as a stable epigenetic marker. However, little is known about how the demethylases are selective for particular lysyl-containing sequences in specific methylation states, a key to understanding their functions. Here we reveal how human JMJD2A (jumonji domain containing 2A), which is selective towards tri- and dimethylated histone H3 lysyl residues 9 and 36 (H3K9me3/me2 and H3K36me3/me2), discriminates between methylation states and achieves sequence selectivity for H3K9. We report structures of JMJD2A-Ni(II)-Zn(II) inhibitor complexes bound to tri-, di- and monomethyl forms of H3K9 and the trimethyl form of H3K36. The structures reveal a lysyl-binding pocket in which substrates are bound in distinct bent conformations involving the Zn-binding site. We propose a mechanism for achieving methylation state selectivity involving the orientation of the substrate methyl groups towards a ferryl intermediate. The results suggest distinct recognition mechanisms in different demethylase subfamilies and provide a starting point to develop chemical tools for drug discovery and to study and dissect the complexity of reversible histone methylation and its role in chromatin biology.


Subject(s)
DNA-Binding Proteins/chemistry , Histones/metabolism , Oxidoreductases, N-Demethylating/chemistry , Transcription Factors/chemistry , Binding Sites , Crystallography, X-Ray , DNA-Binding Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases , Models, Molecular , Oxidoreductases, N-Demethylating/metabolism , Protein Conformation , Recombinant Proteins , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Structure-Activity Relationship , Substrate Specificity , Transcription Factors/metabolism
15.
J Biol Chem ; 286(48): 41616-41625, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-21914792

ABSTRACT

N(ε)-Methylations of histone lysine residues play critical roles in cell biology by "marking" chromatin for transcriptional activation or repression. Lysine demethylases reverse N(ε)-methylation in a sequence- and methylation-selective manner. The determinants of sequence selectivity for histone demethylases have been unclear. The human JMJD2 (KDM4) H3K9 and H3K36 demethylases can be divided into members that act on both H3K9 and H3K36 and H3K9 alone. Kinetic, crystallographic, and mutagenetic studies in vitro and in cells on KDM4A-E reveal that selectivity is determined by multiple interactions within the catalytic domain but outside the active site. Structurally informed phylogenetic analyses reveal that KDM4A-C orthologues exist in all genome-sequenced vertebrates with earlier animals containing only a single KDM4 enzyme. KDM4D orthologues only exist in eutherians (placental mammals) where they are conserved, including proposed substrate sequence-determining residues. The results will be useful for the identification of inhibitors for specific histone demethylases.


Subject(s)
Evolution, Molecular , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/genetics , Structural Homology, Protein , Animals , Crystallography, X-Ray , Humans , Mutagenesis , Structure-Activity Relationship
16.
BMJ Support Palliat Care ; 12(e5): e641-e645, 2022 Nov.
Article in English | MEDLINE | ID: mdl-30470701

ABSTRACT

OBJECTIVES: When active treatment is no longer in the best interests of the patient, redirection of care to palliation is an important transition. We review, within a tertiary neonatal intensive care unit (NICU), the journey leading to the decision to redirect care, the means of symptom control and the provision of psychosocial supports. METHODS: A retrospective review of all 166 deaths of NICU-affiliated patients during a 10- year epoch. Medical notes were reviewed, and the provision and type of, or barriers to, effective palliative care was defined. RESULTS: Extreme prematurity accounted for 71/145 (49%) of deaths with relatively high proportions of Maori 17/71 (25%) and Pacific Islanders 9/71 (13%). Almost all eligible infants received some form of palliation. Transition from curative to palliative care was refused by the family in a single case. Median time from decision to redirect care until first recorded action was 80 min, and median time from action until death was 60 min. The majority of infants received some form of comfort cares, (128/166) most commonly morphine (94/128, 73%). Three infants had documented seizure activity or respiratory distress but did not receive any pharmacological intervention. Psychosocial supports were offered in 98/145 (67%) of cases, but only 71/145 (49%) of families were formally offered an opportunity to discuss the infant's clinical course after their death. CONCLUSIONS: Clinical documentation of care plans was often incomplete, potentially leading to inconsistent delivery of care, increased risk of symptom breakthrough and/or inadequate psychosocial supports for family. Formal individualised palliative care plans are under development to standardise documentation and improve therapeutic and psychosocial interventions available to the infant and their family.


Subject(s)
Hospice and Palliative Care Nursing , Intensive Care Units, Neonatal , Infant, Newborn , Infant , Humans , Palliative Care , Patient Comfort , Morphine Derivatives
17.
Genome Med ; 14(1): 67, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739588

ABSTRACT

BACKGROUND: The incidence of non-alcoholic fatty liver disease (NAFLD)-associated hepatocellular carcinoma (HCC) is increasing worldwide, but the steps in precancerous hepatocytes which lead to HCC driver mutations are not well understood. Here we provide evidence that metabolically driven histone hyperacetylation in steatotic hepatocytes can increase DNA damage to initiate carcinogenesis. METHODS: Global epigenetic state was assessed in liver samples from high-fat diet or high-fructose diet rodent models, as well as in cultured immortalized human hepatocytes (IHH cells). The mechanisms linking steatosis, histone acetylation and DNA damage were investigated by computational metabolic modelling as well as through manipulation of IHH cells with metabolic and epigenetic inhibitors. Chromatin immunoprecipitation and next-generation sequencing (ChIP-seq) and transcriptome (RNA-seq) analyses were performed on IHH cells. Mutation locations and patterns were compared between the IHH cell model and genome sequence data from preneoplastic fatty liver samples from patients with alcohol-related liver disease and NAFLD. RESULTS: Genome-wide histone acetylation was increased in steatotic livers of rodents fed high-fructose or high-fat diet. In vitro, steatosis relaxed chromatin and increased DNA damage marker γH2AX, which was reversed by inhibiting acetyl-CoA production. Steatosis-associated acetylation and γH2AX were enriched at gene clusters in telomere-proximal regions which contained HCC tumour suppressors in hepatocytes and human fatty livers. Regions of metabolically driven epigenetic change also had increased levels of DNA mutation in non-cancerous tissue from NAFLD and alcohol-related liver disease patients. Finally, genome-scale network modelling indicated that redox balance could be a key contributor to this mechanism. CONCLUSIONS: Abnormal histone hyperacetylation facilitates DNA damage in steatotic hepatocytes and is a potential initiating event in hepatocellular carcinogenesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Acetyl Coenzyme A/metabolism , Animals , Carcinogenesis/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Diet, High-Fat/adverse effects , Epigenome , Fructose/adverse effects , Fructose/metabolism , Histones/metabolism , Humans , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/genetics
18.
Blood Adv ; 6(3): 1064-1073, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34872104

ABSTRACT

Leukemia stem cells (LSCs) are linked to relapse in acute myeloid leukemia (AML). The LSC17 gene expression score robustly captures LSC stemness properties in AML and can be used to predict survival outcomes and response to therapy, enabling risk-adapted, upfront treatment approaches. The LSC17 score was developed and validated in a research setting. To enable widespread use of the LSC17 score in clinical decision making, we established a laboratory-developed test (LDT) for the LSC17 score that can be deployed broadly in clinical molecular diagnostic laboratories. We extensively validated the LSC17 LDT in a College of American Pathologists/Clinical Laboratory Improvements Act (CAP/CLIA)-certified laboratory, determining specimen requirements, a synthetic control, and performance parameters for the assay. Importantly, we correlated values from the LSC17 LDT to clinical outcome in a reference cohort of patients with AML, establishing a median assay value that can be used for clinical risk stratification of individual patients with newly diagnosed AML. The assay was established in a second independent CAP/CLIA-certified laboratory, and its technical performance was validated using an independent cohort of patient samples, demonstrating that the LSC17 LDT can be readily implemented in other settings. This study enables the clinical use of the LSC17 score for upfront risk-adapted management of patients with AML.


Subject(s)
Laboratories, Clinical , Leukemia, Myeloid, Acute , Cohort Studies , Humans , Leukemia, Myeloid, Acute/drug therapy , Neoplastic Stem Cells/metabolism , Risk Assessment
19.
EJHaem ; 3(3): 873-884, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36051057

ABSTRACT

A 17-gene stemness (LSC17) score determines risk in acute myeloid leukaemia patients treated with standard chemotherapy regimens. The present study further analysed the impact of the LSC17 score at diagnosis on outcomes following allogeneic haematopoietic cell transplantation (HCT). Out of 452 patients with available LSC17 score, 123 patients received allogeneic HCT. Transplant outcomes, including overall (OS), leukaemia-free survival (LFS), relapse incidence (RI) and non-relapse mortality (NRM), were compared according to the LSC17 scored group. The patients with a low LSC17 score had higher OS (56.2%) and LFS (54.4%) at 2 years compared to patients with high LSC17 score (47.2%, p = 0.0237 for OS and 46.0%, p = 0.0181 for LFS). The low LSC17 score group also had a lower relapse rate at 2 years (12.7%) compared to 25.3% in the high LSC17 score group (p = 0.017), but no difference in NRM (p = 0.674). Worse outcomes in the high LSC17 score group for OS, LFS and relapse were consistently observed across all stratified sub-groups. The use of more intensive conditioning did not improve outcomes for either group. In contrast, chronic graft-versus-host-disease was associated with more favourable outcomes in both groups. The 17-gene stemness score is highly prognostic for survival and relapse risk following allogeneic HCT.

20.
J Am Chem Soc ; 133(24): 9451-6, 2011 Jun 22.
Article in English | MEDLINE | ID: mdl-21585201

ABSTRACT

Histone methylations are important chromatin marks that regulate gene expression, genomic stability, DNA repair, and genomic imprinting. Histone demethylases are the most recent family of histone-modifying enzymes discovered. Here, we report the characterization of a small-molecule inhibitor of Jumonji C domain-containing histone demethylases. The inhibitor derives from a structure-based design and preferentially inhibits the subfamily of trimethyl lysine demethylases. Its methyl ester prodrug, methylstat, selectively inhibits Jumonji C domain-containing his-tone demethylases in cells and may be a useful small-molecule probe of chromatin and its role in epigenetics.


Subject(s)
Enzyme Inhibitors/pharmacology , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Cell Line, Tumor , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Esters , Histone Demethylases/antagonists & inhibitors , Histone Demethylases/metabolism , Humans , Inhibitory Concentration 50 , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Muscle Development/drug effects , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , Prodrugs/metabolism , Prodrugs/pharmacology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL