Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biochem Soc Trans ; 52(2): 553-565, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38563502

ABSTRACT

Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.


Subject(s)
Mitochondria , Neurodegenerative Diseases , Neurons , Parvalbumins , Humans , Parvalbumins/metabolism , Neurodegenerative Diseases/metabolism , Mitochondria/metabolism , Animals , Neurons/metabolism , Nervous System Diseases/metabolism , Brain/metabolism
2.
Eur J Neurol ; 31(7): e16275, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38576261

ABSTRACT

BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. METHODS: A panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. RESULTS: A high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with γ-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. CONCLUSIONS: These consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy.


Subject(s)
Anticonvulsants , Mitochondrial Diseases , Seizures , Humans , Mitochondrial Diseases/complications , Mitochondrial Diseases/therapy , Seizures/therapy , Seizures/drug therapy , Anticonvulsants/therapeutic use , Consensus , Epilepsy/therapy , Epilepsy/drug therapy , Delphi Technique
3.
Hum Mol Genet ; 30(R2): R245-R253, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34169319

ABSTRACT

Mitochondrial DNA (mtDNA) disorders are recognized as one of the most common causes of inherited metabolic disorders. The mitochondrial genome occurs in multiple copies resulting in both homoplasmic and heteroplasmic pathogenic mtDNA variants. A biochemical defect arises when the pathogenic variant level reaches a threshold, which differs between variants. Moreover, variants can segregate, clonally expand, or be lost from cellular populations resulting in a dynamic and tissue-specific mosaic pattern of oxidative deficiency. MtDNA is maternally inherited but transmission patterns of heteroplasmic pathogenic variants are complex. During oogenesis, a mitochondrial bottleneck results in offspring with widely differing variant levels to their mother, whilst highly deleterious variants, such as deletions, are not transmitted. Complemented by a complex interplay between mitochondrial and nuclear genomes, these peculiar genetics produce marked phenotypic variation, posing challenges to the diagnosis and clinical management of patients. Novel therapeutic compounds and several genetic therapies are currently under investigation, but proven disease-modifying therapies remain elusive. Women who carry pathogenic mtDNA variants require bespoke genetic counselling to determine their reproductive options. Recent advances in in vitro fertilization techniques, have greatly improved reproductive choices, but are not without their challenges. Since the first pathogenic mtDNA variants were identified over 30 years ago, there has been remarkable progress in our understanding of these diseases. However, many questions remain unanswered and future studies are required to investigate the mechanisms of disease progression and to identify new disease-specific therapeutic targets.


Subject(s)
DNA, Mitochondrial , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Mitochondrial Diseases/genetics , Disease Management , Extrachromosomal Inheritance , Humans , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/therapy
4.
Ann Neurol ; 91(1): 117-130, 2022 01.
Article in English | MEDLINE | ID: mdl-34716721

ABSTRACT

OBJECTIVE: This observational cohort study aims to quantify disease burden over time, establish disease progression rates, and identify factors that may determine the disease course of Leigh syndrome. METHODS: Seventy-two Leigh syndrome children who completed the Newcastle Paediatric Mitochondrial Disease Scale (NPMDS) at baseline at 3.7 years (interquartile range [IQR] = 2.0-7.6) and follow-up assessments at 7.5 years (IQR = 3.7-11.0) in clinics were enrolled. Eighty-two percent of this cohort had a confirmed genetic diagnosis, with pathogenic variants in the MT-ATP6 and SURF1 genes being the most common cause. The total NPMDS scores denoted mild (0-14), moderate (15-25), and severe (>25) disease burden. Detailed clinical, neuroradiological, and molecular genetic findings were also analyzed. RESULTS: The median total NPMDS scores rose significantly (Z = -6.9, p < 0.001), and the percentage of children with severe disease burden doubled (22% → 42%) over 2.6 years of follow-up. Poor function (especially mobility, self-care, communication, feeding, and education) and extrapyramidal features contributed significantly to the disease burden (τb  ≈ 0.45-0.68, p < 0.001). These children also deteriorated to wheelchair dependence (31% → 57%), exclusive enteral feeding (22% → 46%), and one-to-one assistance for self-care (25% → 43%) during the study period. Twelve children (17%) died after their last NPMDS scores were recorded. These children had higher follow-up NPMDS scores (disease burden; p < 0.001) and steeper increase in NPMDS score per annum (disease progression; p < 0.001). Other predictors of poor outcomes include SURF1 gene variants (p < 0.001) and bilateral caudate changes on neuroimaging (p < 0.01). INTERPRETATION: This study has objectively defined the disease burden and progression of Leigh syndrome. Our analysis has also uncovered potential influences on the trajectory of this neurodegenerative condition. ANN NEUROL 2022;91:117-130.


Subject(s)
Leigh Disease , Child , Child, Preschool , Cohort Studies , Cost of Illness , Disease Progression , Female , Humans , Infant , Longitudinal Studies , Male
5.
Cerebellum ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955812

ABSTRACT

With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.

6.
Brain ; 145(2): 542-554, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34927673

ABSTRACT

In this retrospective, multicentre, observational cohort study, we sought to determine the clinical, radiological, EEG, genetics and neuropathological characteristics of mitochondrial stroke-like episodes and to identify associated risk predictors. Between January 1998 and June 2018, we identified 111 patients with genetically determined mitochondrial disease who developed stroke-like episodes. Post-mortem cases of mitochondrial disease (n = 26) were identified from Newcastle Brain Tissue Resource. The primary outcome was to interrogate the clinico-radiopathological correlates and prognostic indicators of stroke-like episode in patients with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes syndrome (MELAS). The secondary objective was to develop a multivariable prediction model to forecast stroke-like episode risk. The most common genetic cause of stroke-like episodes was the m.3243A>G variant in MT-TL1 (n = 66), followed by recessive pathogenic POLG variants (n = 22), and 11 other rarer pathogenic mitochondrial DNA variants (n = 23). The age of first stroke-like episode was available for 105 patients [mean (SD) age: 31.8 (16.1)]; a total of 35 patients (32%) presented with their first stroke-like episode ≥40 years of age. The median interval (interquartile range) between first and second stroke-like episodes was 1.33 (2.86) years; 43% of patients developed recurrent stroke-like episodes within 12 months. Clinico-radiological, electrophysiological and neuropathological findings of stroke-like episodes were consistent with the hallmarks of medically refractory epilepsy. Patients with POLG-related stroke-like episodes demonstrated more fulminant disease trajectories than cases of m.3243A>G and other mitochondrial DNA pathogenic variants, in terms of the frequency of refractory status epilepticus, rapidity of progression and overall mortality. In multivariate analysis, baseline factors of body mass index, age-adjusted blood m.3243A>G heteroplasmy, sensorineural hearing loss and serum lactate were significantly associated with risk of stroke-like episodes in patients with the m.3243A>G variant. These factors informed the development of a prediction model to assess the risk of developing stroke-like episodes that demonstrated good overall discrimination (area under the curve = 0.87, 95% CI 0.82-0.93; c-statistic = 0.89). Significant radiological and pathological features of neurodegeneration were more evident in patients harbouring pathogenic mtDNA variants compared with POLG: brain atrophy on cranial MRI (90% versus 44%, P < 0.001) and reduced mean brain weight (SD) [1044 g (148) versus 1304 g (142), P = 0.005]. Our findings highlight the often idiosyncratic clinical, radiological and EEG characteristics of mitochondrial stroke-like episodes. Early recognition of seizures and aggressive instigation of treatment may help circumvent or slow neuronal loss and abate increasing disease burden. The risk-prediction model for the m.3243A>G variant can help inform more tailored genetic counselling and prognostication in routine clinical practice.


Subject(s)
MELAS Syndrome , Mitochondrial Diseases , Stroke , Adult , DNA, Mitochondrial/genetics , Humans , MELAS Syndrome/genetics , Mitochondrial Diseases/complications , Mitochondrial Diseases/genetics , Mutation , Retrospective Studies , Stroke/diagnostic imaging , Stroke/genetics
7.
Int J Mol Sci ; 24(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37298649

ABSTRACT

Mitochondrial diseases represent the most common inherited neurometabolic disorders, for which no effective therapy currently exists for most patients. The unmet clinical need requires a more comprehensive understanding of the disease mechanisms and the development of reliable and robust in vivo models that accurately recapitulate human disease. This review aims to summarise and discuss various mouse models harbouring transgenic impairments in genes that regulate mitochondrial function, specifically their neurological phenotype and neuropathological features. Ataxia secondary to cerebellar impairment is one of the most prevalent neurological features of mouse models of mitochondrial dysfunction, consistent with the observation that progressive cerebellar ataxia is a common neurological manifestation in patients with mitochondrial disease. The loss of Purkinje neurons is a shared neuropathological finding in human post-mortem tissues and numerous mouse models. However, none of the existing mouse models recapitulate other devastating neurological phenotypes, such as refractory focal seizures and stroke-like episodes seen in patients. Additionally, we discuss the roles of reactive astrogliosis and microglial reactivity, which may be driving the neuropathology in some of the mouse models of mitochondrial dysfunction, as well as mechanisms through which cellular death may occur, beyond apoptosis, in neurons undergoing mitochondrial bioenergy crisis.


Subject(s)
Cerebellar Ataxia , Mitochondrial Diseases , Mice , Animals , Humans , Ataxia/genetics , Cerebellar Ataxia/pathology , Purkinje Cells/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Seizures/pathology , Phenotype , Disease Models, Animal
8.
Ann Neurol ; 86(2): 310-315, 2019 08.
Article in English | MEDLINE | ID: mdl-31187502

ABSTRACT

Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.


Subject(s)
Genetic Variation/genetics , Mitochondrial Diseases/epidemiology , Mitochondrial Diseases/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mitochondrial Diseases/diagnosis , United Kingdom/epidemiology , Young Adult
9.
J Inherit Metab Dis ; 43(4): 800-818, 2020 07.
Article in English | MEDLINE | ID: mdl-32030781

ABSTRACT

Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Mitochondria/drug effects , Mitochondrial Diseases/chemically induced , Pharmaceutical Preparations , Consensus , Delphi Technique , Drug Design , Humans , Internationality , Mitochondria/metabolism , Practice Guidelines as Topic , Toxicity Tests
10.
N Engl J Med ; 384(2): 192, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33497561
11.
Ann Neurol ; 83(1): 115-130, 2018 01.
Article in English | MEDLINE | ID: mdl-29283441

ABSTRACT

OBJECTIVE: Single, large-scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large-scale mtDNA deletions in skeletal muscle. METHODS: We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large-scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. RESULTS: We have defined 3 "classes" of single, large-scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. INTERPRETATION: Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex-specific protein-encoding genes. Furthermore, removal of mt-tRNA genes impacts specific complexes only at high deletion levels, when complex-specific protein-encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115-130.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondrial Diseases/genetics , Sequence Deletion/genetics , Adult , Aged , Biopsy , Cohort Studies , Electron Transport Complex I/genetics , Electron Transport Complex IV/genetics , Female , Gene Deletion , Gene Dosage , Humans , Male , Middle Aged , Mitochondrial Diseases/pathology , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Oxidative Phosphorylation , Young Adult
13.
Ann Neurol ; 80(5): 686-692, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27453452

ABSTRACT

OBJECTIVES: The m.3243A>G MTTL1 mutation is the most common cause of mitochondrial disease; yet there is limited awareness of intestinal pseudo-obstruction (IPO) in this disorder. We aimed to determine the prevalence, severity, and clinical outcome of patients with m.3243A>G-related mitochondrial disease manifesting with IPO. METHODS: In this large, observational cohort study, we assessed the clinical, molecular, and radiological characteristics of patients with genetically determined m.3243A>G-related mitochondrial disease, who presented with severe symptoms suggestive of bowel obstruction in the absence of an occluding lesion. RESULTS: Between January 2009 and June 2015, 226 patients harbouring the m.3243A>G mutation were recruited to the Medical Research Council Centre Mitochondrial Disease Patient Cohort, Newcastle. Thirty patients (13%) presented acutely with IPO. Thirteen of these patients had a preceding history of stroke-like episodes, whereas 1 presented 27 years previously with their first stroke-like episode. Eight patients developed IPO concomitantly during an acute stroke-like episode. Regression analysis suggested stroke was the strongest predictor for development of IPO, in addition to cardiomyopathy, low body mass index and high urinary mutation load. Poor clinical outcome was observed in 6 patients who underwent surgical procedures. INTERPRETATION: Our findings suggest, in this common mitochondrial disease, that IPO is an under-recognized, often misdiagnosed clinical entity. Poor clinical outcome associated with stroke and acute surgical intervention highlights the importance of the neurologist having a high index of suspicion, particularly in the acute setting, to instigate timely coordination of appropriate care and management with other specialists. Ann Neurol 2016;80:686-692.


Subject(s)
DNA, Mitochondrial/genetics , Intestinal Pseudo-Obstruction/diagnostic imaging , Intestinal Pseudo-Obstruction/genetics , Mitochondrial Diseases/genetics , RNA, Transfer, Leu/genetics , Stroke/genetics , Adolescent , Adult , Aged , Child , Female , Humans , Intestinal Pseudo-Obstruction/etiology , Male , Middle Aged , Mitochondrial Diseases/complications , Outcome Assessment, Health Care , Prevalence , Stroke/etiology , Young Adult
14.
J Med Genet ; 53(11): 768-775, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27412952

ABSTRACT

BACKGROUND: Mutations in the RMND1 (Required for Meiotic Nuclear Division protein 1) gene have recently been linked to infantile onset mitochondrial disease characterised by multiple mitochondrial respiratory chain defects. METHODS: We summarised the clinical, biochemical and molecular genetic investigation of an international cohort of affected individuals with RMND1 mutations. In addition, we reviewed all the previously published cases to determine the genotype-phenotype correlates and performed survival analysis to identify prognostic factors. RESULTS: We identified 14 new cases from 11 pedigrees that harbour recessive RMND1 mutations, including 6 novel variants: c.533C>A, p.(Thr178Lys); c.565C>T, p.(Gln189*); c.631G>A, p.(Val211Met); c.1303C>T, p.(Leu435Phe); c.830+1G>A and c.1317+1G>T. Together with all previously published cases (n=32), we show that congenital sensorineural deafness, hypotonia, developmental delay and lactic acidaemia are common clinical manifestations with disease onset under 2 years. Renal involvement is more prevalent than seizures (66% vs 44%). In addition, median survival time was longer in patients with renal involvement compared with those without renal disease (6 years vs 8 months, p=0.009). The neurological phenotype also appears milder in patients with renal involvement. CONCLUSIONS: The clinical phenotypes and prognosis associated with RMND1 mutations are more heterogeneous than that were initially described. Regular monitoring of kidney function is imperative in the clinical practice in light of nephropathy being present in over 60% of cases. Furthermore, renal replacement therapy should be considered particularly in those patients with mild neurological manifestation as shown in our study that four recipients of kidney transplant demonstrate good clinical outcome to date.

15.
Eur Heart J ; 37(32): 2552-9, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-26188002

ABSTRACT

AIMS: To provide insight into the mechanism of sudden adult death syndrome (SADS) and to give new clinical guidelines for the cardiac management of patients with the most common mitochondrial DNA mutation, m.3243A>G. These studies were initiated after two young, asymptomatic adults harbouring the m.3243A>G mutation died suddenly and unexpectedly. The m.3243A>G mutation is present in ∼1 in 400 of the population, although the recognized incidence of mitochondrial DNA (mtDNA) disease is ∼1 in 5000. METHODS AND RESULTS: Pathological studies including histochemistry and molecular genetic analyses performed on various post-mortem samples including cardiac tissues (atrium and ventricles) showed marked respiratory chain deficiency and high levels of the m.3243A>G mutation. Systematic review of cause of death in our m.3243A>G patient cohort showed the person-time incidence rate of sudden adult death is 2.4 per 1000 person-years. A further six cases of sudden death among extended family members have been identified from interrogation of family pedigrees. CONCLUSION: Our findings suggest that SADS is an important cause of death in patients with m.3243A>G and likely to be due to widespread respiratory chain deficiency in cardiac muscle. The involvement of asymptomatic relatives highlights the importance of family tracing in patients with m.3243A>G and the need for specific cardiac arrhythmia surveillance in the management of this common genetic disease. In addition, these findings have prompted the derivation of cardiac guidelines specific to patients with m.3243A>G-related mitochondrial disease. Finally, due to the prevalence of this mtDNA point mutation, we recommend inclusion of testing for m.3243A>G mutations in the genetic autopsy of all unexplained cases of SADS.


Subject(s)
Death, Sudden , Adult , DNA, Mitochondrial , Humans , Mitochondria , Mitochondrial Diseases , Mutation
16.
Epilepsia ; 57(10): 1531-1545, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27554452

ABSTRACT

We performed a systematic review of the clinical, molecular, and biochemical features of polymerase gamma (POLG)-related epilepsy and current evidence on seizure management. Patients were identified from a combined electronic search of articles using Ovid Medline and Scopus databases, published from January 2000 to January 2015. Only patients with a confirmed genetic diagnosis of POLG mutations were considered. Seventy-two articles were included for analysis. We identified 128 pathogenic variants in 372 patients who had POLG-related epilepsy. Among these, 84% of the cases harbored at least one of these pathogenic variants: p.Ala467Thr, p.Trp748Ser, and p.Gly848Ser. A bimodal distribution of disease onset was present in early childhood (<5 years) and adolescence; female patients had a later presentation than male patients (median age 4.00 vs. 1.83 years, p-value = 0.041). Focal-onset seizure including convulsive, myoclonus, and occipital seizures was common at the outset and was refractory to pharmacotherapy. We confirmed that homozygous pathogenic variants located in the linker region of POLG were associated with later age of onset and longer survival compared to compound heterozygous variants. In addition, biochemical and molecular heterogeneities in different tissues were frequently observed. POLG-related epilepsy is clinically heterogeneous, and the prognosis is, in part, influenced by the location of the variants in the gene and the presence of hepatic involvement. Normal muscle and fibroblast studies do no exclude the diagnosis of POLG-related mitochondrial disease and direct sequencing of the POLG gene should be the gold standard when investigating suspected cases.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Epilepsy/genetics , Mutation/genetics , Age of Onset , Brain/diagnostic imaging , Brain/pathology , DNA Polymerase gamma , Databases, Bibliographic/statistics & numerical data , Electroencephalography , Epilepsy/diagnostic imaging , Epilepsy/mortality , Female , Humans , Kaplan-Meier Estimate , Major Histocompatibility Complex/genetics , Male , Neuroimaging
19.
Handb Clin Neurol ; 194: 65-78, 2023.
Article in English | MEDLINE | ID: mdl-36813321

ABSTRACT

Stroke-like episode is a paroxysmal neurological manifestation which affects a specific group of patients with mitochondrial disease. Focal-onset seizures, encephalopathy, and visual disturbances are prominent findings associated with stroke-like episodes, with a predilection for the posterior cerebral cortex. The most common cause of stroke-like episodes is the m.3243A>G variant in MT-TL1 gene followed by recessive POLG variants. This chapter aims to review the definition of stroke-like episode and delineate the clinical phenomenology, neuroimaging and EEG findings typically seen in patients. In addition, several lines of evidence supporting neuronal hyper-excitability as the key mechanism of stroke-like episodes are discussed. The management of stroke-like episodes should focus on aggressive seizure management and treatment for concomitant complications such as intestinal pseudo-obstruction. There is no robust evidence to prove the efficacy of l-arginine for both acute and prophylactic settings. Progressive brain atrophy and dementia are the sequalae of recurrent stroke-like episode, and the underlying genotype in part predicts prognosis.


Subject(s)
MELAS Syndrome , Mitochondrial Diseases , Stroke , Humans , Adult , MELAS Syndrome/complications , MELAS Syndrome/genetics , Stroke/complications , Mitochondrial Diseases/genetics , Mitochondria , Brain , Seizures
20.
Handb Clin Neurol ; 195: 563-585, 2023.
Article in English | MEDLINE | ID: mdl-37562887

ABSTRACT

Mitochondrial dysfunction, especially perturbation of oxidative phosphorylation and adenosine triphosphate (ATP) generation, disrupts cellular homeostasis and is a surprisingly frequent cause of central and peripheral nervous system pathology. Mitochondrial disease is an umbrella term that encompasses a host of clinical syndromes and features caused by in excess of 300 different genetic defects affecting the mitochondrial and nuclear genomes. Patients with mitochondrial disease can present at any age, ranging from neonatal onset to late adult life, with variable organ involvement and neurological manifestations including neurodevelopmental delay, seizures, stroke-like episodes, movement disorders, optic neuropathy, myopathy, and neuropathy. Until relatively recently, analysis of skeletal muscle biopsy was the focus of diagnostic algorithms, but step-changes in the scope and availability of next-generation sequencing technology and multiomics analysis have revolutionized mitochondrial disease diagnosis. Currently, there is no specific therapy for most types of mitochondrial disease, although clinical trials research in the field is gathering momentum. In that context, active management of epilepsy, stroke-like episodes, dystonia, brainstem dysfunction, and Parkinsonism are all the more important in improving patient quality of life and reducing mortality.


Subject(s)
Mitochondrial Diseases , Mitochondrial Encephalomyopathies , Stroke , Adult , Infant, Newborn , Humans , Mitochondrial Encephalomyopathies/diagnosis , Mitochondrial Encephalomyopathies/genetics , DNA, Mitochondrial/genetics , Quality of Life , Mitochondrial Diseases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL