Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
AJR Am J Roentgenol ; 204(5): W579-85, 2015 May.
Article in English | MEDLINE | ID: mdl-25905965

ABSTRACT

OBJECTIVE: The purpose of this study is to measure the organ doses and effective dose (ED) for parathyroid 4D CT and scintigraphy and to estimate the lifetime attributable risk of cancer incidence associated with imaging. MATERIALS AND METHODS: Organ radiation doses for 4D CT and scintigraphy were measured on the basis of imaging with our institution's protocols. An anthropomorphic phantom with metal oxide semiconductor field effect transistor detectors was scanned to measure CT organ dose. Organ doses from the radionuclide were based on International Commission for Radiological Protection report 80. ED was calculated for 4D CT and scintigraphy and was used to estimate the lifetime attributable risk of cancer incidence for patients differing in age and sex with the approach established by the Biologic Effects of Ionizing Radiation VII report. A 55-year-old woman was selected as the standard patient according to the demographics of patients with primary hyperparathyroidism. RESULTS: Organs receiving the highest radiation dose from 4D CT were the thyroid (150.6 mGy) and salivary glands (137.8 mGy). For scintigraphy, the highest organ doses were to the colon (41.5 mGy), gallbladder (39.8 mGy), and kidneys (32.3 mGy). The ED was 28 mSv for 4D CT, compared with 12 mSv for scintigraphy. In the exposed standard patient, the lifetime attributable risk for cancer incidence was 193 cancers/100,000 patients for 4D CT and 68 cancers/100,000 patients for scintigraphy. Given a baseline lifetime incidence of cancer of 46,300 cancers/100,000 patients, imaging results in an increase in lifetime incidence of cancer over baseline of 0.52% for 4D CT and 0.19% for scintigraphy. CONCLUSION: The ED of 4D CT is more than double that of scintigraphy, but both studies cause negligible increases in lifetime risk of cancer. Clinicians should not allow concern for radiation-induced cancer to influence decisions regarding workup in older patients.


Subject(s)
Four-Dimensional Computed Tomography , Neoplasms, Radiation-Induced/etiology , Parathyroid Diseases/diagnostic imaging , Radiation Dosage , Female , Humans , Incidence , Male , Neoplasms, Radiation-Induced/epidemiology , Phantoms, Imaging , Radionuclide Imaging , Risk Assessment , Risk Factors
2.
Pediatr Radiol ; 43(9): 1117-27, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23636537

ABSTRACT

BACKGROUND: Advanced multidetector CT systems facilitate volumetric image acquisition, which offers theoretic dose savings over helical acquisition with shorter scan times. OBJECTIVE: Compare effective dose (ED), scan duration and image noise using 320- and 64-detector CT scanners in various acquisition modes for clinical chest, abdomen and pelvis protocols. MATERIALS AND METHODS: ED and scan durations were determined for 64-detector helical, 160-detector helical and volume modes under chest, abdomen and pelvis protocols on 320-detector CT with adaptive collimation and 64-detector helical mode on 64-detector CT without adaptive collimation in a phantom representing a 5-year-old child. Noise was measured as standard deviation of Hounsfield units. RESULTS: Compared to 64-detector helical CT, all acquisition modes on 320-detector CT resulted in lower ED and scan durations. Dose savings were greater for chest (27-46%) than abdomen/pelvis (18-28%) and chest/abdomen/pelvis imaging (8-14%). Noise was similar across scanning modes, although some protocols on 320-detector CT produced slightly higher noise. CONCLUSION: Dose savings can be achieved for chest, abdomen/pelvis and chest/abdomen/pelvis examinations on 320-detector CT compared to helical acquisition on 64-detector CT, with shorter scan durations. Although noise differences between some modes reached statistical significance, this is of doubtful diagnostic significance and will be studied further in a clinical setting.


Subject(s)
Artifacts , Imaging, Three-Dimensional/instrumentation , Phantoms, Imaging , Radiation Dosage , Radiometry , Tomography, Spiral Computed/instrumentation , Whole Body Imaging/instrumentation , Child , Equipment Design , Equipment Failure Analysis , Humans , Reproducibility of Results , Sensitivity and Specificity , Time Factors
3.
AJR Am J Roentgenol ; 199(5): 1129-35, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23096189

ABSTRACT

OBJECTIVE: The purpose of this study is to determine patient dose estimates for clinical pediatric cardiac-gated CT angiography (CTA) protocols on a 320-MDCT volume scanner. MATERIALS AND METHODS: Organ doses were measured using 20 metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Radiation dose was estimated for volumetrically acquired clinical pediatric prospectively and retrospectively ECG-gated cardiac CTA protocols in 5-year-old and 1-year-old anthropomorphic phantoms on a 320-MDCT scanner. Simulated heart rates of 60 beats/min (5-year-old phantom) and 120 beats/min (1- and 5-year-old phantoms) were used. Effective doses (EDs) were calculated using average measured organ doses and International Commission on Radiological Protection 103 tissue-weighting factors. Dose-length product (DLP) was recorded for each examination and was used to develop dose conversion factors for pediatric cardiac examinations acquired with volume scan mode. DLP was also used to estimate ED according to recently published dose conversion factors for pediatric helical chest examinations. Repeated measures and paired Student t test analyses were performed. RESULTS: For the 5-year-old phantom, at 60 beats/min, EDs ranged from 1.2 mSv for a prospectively gated examination to 4.5 mSv for a retrospectively gated examination. For the 5-year-old phantom, at 120 beats/min, EDs ranged from 3.0 mSv for a prospectively gated examination to 4.9 mSv for a retrospectively gated examination. For the 1-year-old phantom, at 120 beats/min, EDs ranged from 2.7 mSv for a prospectively gated examination to 4.5 mSv for a retrospectively gated examination. CONCLUSION: EDs for 320-MDCT volumetrically acquired ECG-gated pediatric cardiac CTA are lower than those published for conventional 16- and 64-MDCT scanners.


Subject(s)
Cardiac-Gated Imaging Techniques , Coronary Angiography/methods , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed/methods , Body Burden , Calibration , Child, Preschool , Humans , Infant , Prospective Studies , Retrospective Studies
4.
AJR Am J Roentgenol ; 198(5): 1132-8, 2012 May.
Article in English | MEDLINE | ID: mdl-22528904

ABSTRACT

OBJECTIVE: The purpose of this study was to assess the difference in absorbed organ dose and image quality for MDCT neck protocols using automatic tube current modulation alone compared with organ-based dose modulation and in-plane thyroid bismuth shielding. MATERIALS AND METHODS: An anthropomorphic female phantom with metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned on a 64-MDCT scanner. The protocols included a reference neck CT protocol using automatic tube current modulation and three modified protocols: organ-based dose modulation, automatic tube current modulation with thyroid shield, and organ-based dose modulation with thyroid shield. Image noise was evaluated quantitatively with the SD of the attenuation value, and subjectively by two neuroradiologists. RESULTS: Organ-based dose modulation, automatic tube current modulation with thyroid shield, and organ-based dose modulation with thyroid shield protocols reduced the thyroid dose by 28%, 33%, and 45%, respectively, compared with the use of automatic tube current modulation alone (p ≤ 0.005). Organ-based dose modulation also reduced the radiation dose to the ocular lens (33-47%) compared with the use of automatic tube current modulation (p ≤ 0.04). There was no significant difference in measured noise and subjective image quality between the protocols. CONCLUSION: Both organ-based dose modulation and thyroid shields significantly reduce the thyroid organ dose without degradation of subjective image quality compared with automatic tube current modulation. Organ-based dose modulation has the additional benefit of dose reduction to the ocular lens.


Subject(s)
Radiation Dosage , Radiation Protection/instrumentation , Thyroid Gland/radiation effects , Tomography, X-Ray Computed , Body Burden , Female , Humans , Neck , Phantoms, Imaging , Radiometry , Software
5.
AJR Am J Roentgenol ; 192(1): 244-53, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19098206

ABSTRACT

OBJECTIVE: The purpose of this study was to assess whether radiation dose savings using a lower peak kilovoltage (kVp) setting, bismuth breast shields, and automatic tube current modulation could be achieved while preserving the image quality of MDCT scans obtained to assess for pulmonary embolus (PE). MATERIALS AND METHODS: CT angiography (CTA) examinations were performed to assess for the presence or absence of pulmonary artery emboli using a 64-MDCT scanner with automatic tube current modulation (noise level=10 HU), two kVp settings (120 and 140 kVp), and bismuth breast shields. Absorbed organ doses were measured using anthropomorphic phantoms and metal oxide semiconductor field effect transistor (MOSFET) detectors. Image quality was assessed quantitatively as well as qualitatively in various anatomic sites of the thorax. RESULTS: Using a lower kVp (120 vs 140 kVp) and automatic tube current modulation resulted in a dose savings of 27% to the breast and 47% to the lungs. The use of a lower kVp (120 kVp), automatic tube current modulation, and bismuth shields placed directly on the anterior chest wall reduced absorbed breast and lung doses by 55% and 45%, respectively. Qualitative assessment of the images showed no change in image quality of the lungs and mediastinum when using a lower kVp, bismuth shields, or both. CONCLUSION: The use of bismuth breast shields together with a lower kVp and automatic tube current modulation will reduce the absorbed radiation dose to the breast and lungs without degradation of image quality to the organs of the thorax for CTA detection of PE.


Subject(s)
Body Burden , Pulmonary Embolism/diagnostic imaging , Radiation Protection/instrumentation , Radiation Protection/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/instrumentation , Tomography, X-Ray Computed/methods , Adult , Female , Humans , Male , Radiation Dosage , Relative Biological Effectiveness
6.
Radiat Prot Dosimetry ; 172(4): 416-421, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26705355

ABSTRACT

A novel method was presented for the effective dose (ED) measurement with metal-oxide-semiconductor field-effect transistor (MOSFET) detectors in dual-energy (DE) dual-source (DS) computed tomography (CT) scanner. This study demonstrated that the mean energy of the combined spectrum in dual-source computed tomography can be used to measure the ED. For validation, the MOSFET dose at the centre cavity of a CT dose index (CTDI) body phantom was compared with the dose measured with an energy-independent ion chamber (IC). A clinical abdomen/pelvis scan was performed with an adult anthropomorphic phantom, and ED was compared between the MOSFET method and the dose length product (DLP) method. The tissue doses in the CTDI phantom were 2.08±(2.70 %) with IC and 2.20±(4.82 %) cGy with MOSFET; the per cent difference was 5.91 %, and the t-test showed that there was no statistically significant difference. EDs for the abdomen/pelvis scans were 5.01±(2.34 %) mSv with MOSFET and 5.56 mSv with the DLP method.


Subject(s)
Phantoms, Imaging , Radiometry/methods , Tomography, X-Ray Computed/methods , Transistors, Electronic/standards , Adult , Body Burden , Humans , Radiation Dosage , Semiconductors
7.
Urology ; 85(5): 1214.e1-1214.e6, 2015 May.
Article in English | MEDLINE | ID: mdl-25772480

ABSTRACT

OBJECTIVE: To establish a feasible rat model of radiation-induced erectile dysfunction after targeted prostate irradiation using an image-guided irradiation unit specially designed for small-animal radiation research. METHODS: The X-RAD 225Cx research platform was used in the present study. We first performed quality assurance testing using a rat cadaver. After confirming dosimetry, 24 age-matched, young, adult, male rats were assigned to sham radiation or radiation to the prostate with doses of 15, 20, or 25 Gy. To confirm appropriate prostate irradiation, physiological erectile function was evaluated using intracavernous pressure (ICP) measurements with cavernous nerve electrical stimulation at 9 weeks after radiotherapy. Each animal was weighed at the time of ICP measurement. In addition, we investigated the cyclic guanosine monophosphate level in the penile cavernosa using a commercial enzyme-linked immunosorbent assay kit. RESULTS: Quality assurance results confirmed the accuracy of the irradiation technique. Dose-dependent decreases in ICP in irradiated rats were observed without major toxicity. No difference in body weight was noted among the experimental groups. Cyclic guanosine monophosphate levels were significantly decreased in the group that received 25 Gy compared with the age-matched sham-irradiated group. CONCLUSION: High-precision imaging and targeting capabilities provided by the micro-IGRT platform enable us to develop a reproducible animal model of radiation-induced erectile dysfunction in prostate cancer research.


Subject(s)
Disease Models, Animal , Erectile Dysfunction/etiology , Prostate/radiation effects , Radiation Injuries/complications , Animals , Cyclic GMP/analysis , Male , Penis/chemistry , Pilot Projects , Radiation Dosage , Rats , Rats, Sprague-Dawley
8.
Interv Neuroradiol ; 20(5): 525-32, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25363254

ABSTRACT

This study investigated the degree to which body habitus influences radiation dose during CT fluoroscopy (CTF)-guided lumbar epidural steroid injections (ESI). An anthropomorphic phantom containing metal oxide semiconductor field effect transistor (MOSFET) detectors was scanned at two transverse levels to simulate upper and lower lumbar CTF-guided ESI. Circumferential layers of adipose-equivalent material were sequentially added to model patients of three sizes: small (cross-sectional dimensions 25×30 cm), average (34×39 cm), and oversize (43×48 cm). Point dose rates to skin and internal organs within the CTF beam were measured. Scattered point dose rates 5 cm from the radiation beam were also measured. Direct point dose rates to the internal organs ranged from 0.05-0.11 mGy/10mAs in the oversized phantom, and from 0.18-0.43 mGy/10mAs in the small phantom. Skin direct point dose rates ranged from 0.69-0.71 mGy/10mAs in the oversized phantom and 0.88-0.94 mGy/10mAs in the small phantom. This represents a 180-310% increase in organ point dose rates and 24-36% increase in skin point dose rates in the small habitus compared with the oversize habitus. Scatter point dose rates increased by 83-117% for the small compared to the oversize phantom. Decreasing body habitus results in substantial increases in direct organ and skin point doses as well as scattered dose during simulated CTF-guided procedures. Failure to account for individual variations in body habitus will result in inaccurate dose estimation and inappropriate choice of tube current in CTF-guided procedures.


Subject(s)
Fluoroscopy/methods , Injections, Epidural/methods , Radiation Dosage , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Fluoroscopy/statistics & numerical data , Humans , Lumbosacral Region , Microcomputers , Radiography, Interventional , Skin/radiation effects , Spine/diagnostic imaging , Steroids/administration & dosage , Steroids/therapeutic use
9.
Acad Radiol ; 20(9): 1152-61, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23931430

ABSTRACT

RATIONALE AND OBJECTIVES: Efforts to decrease radiation exposure during pediatric high-resolution thoracic computed tomography (HRCT), while maintaining diagnostic image quality, are imperative. The objective of this investigation was to compare organ doses and scan performance for pediatric HRCT using volume, helical, and noncontiguous axial acquisitions. MATERIALS AND METHODS: Thoracic organ doses were measured using 20 metal oxide semiconductor field-effect transistor dosimeters. Mean and median organ doses and scan durations were determined and compared for three acquisition modes in a 5-year-old anthropomorphic phantom using similar clinical pediatric scan parameters. Image noise was measured and compared in identical regions within the thorax. RESULTS: There was a significantly lower dose in lung (1.8 vs 2.7 mGy, P < .02) and thymus (2.3 vs 2.7 mGy, P < .02) between volume and noncontiguous axial modes and in lung (1.8 vs 2.3 mGy, P < .02), breast (1.8 vs 2.6 mGy, P < .02), and thymus (2.3 vs 2.4 mGy, P < .02) between volume and helical modes. There was a significantly lower median image noise for volume compared to helical and axial modes in lung (55.6 vs 79.3 and 70.7) and soft tissue (76.0 vs 111.3 and 89.9). Scan times for volume, helical, and noncontiguous axial acquisitions were 0.35, 3.9, and 24.5 seconds, respectively. CONCLUSION: Volumetric HRCT provides an opportunity for thoracic organ dose and image noise reduction, at significantly faster scanning speeds, which may benefit pediatric patients undergoing surveillance studies for diffuse lung disease.


Subject(s)
Radiation Dosage , Radiation Protection/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Whole-Body Counting , Child, Preschool , Humans , Phantoms, Imaging , Radiographic Image Enhancement/methods , Radiography, Thoracic/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Tomography, X-Ray Computed/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL