Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
Add more filters

Publication year range
1.
Genome Res ; 33(9): 1568-1581, 2023 09.
Article in English | MEDLINE | ID: mdl-37532520

ABSTRACT

The cytidine deaminases APOBEC3A (A3A) and APOBEC3B (A3B) are prominent mutators of human cancer genomes. However, tumor-specific genetic modulators of APOBEC-induced mutagenesis are poorly defined. Here, we used a screen to identify 61 gene deletions that increase A3B-induced mutations in yeast. We also determined whether each deletion was epistatic with Ung1 loss, which indicated whether the encoded factors participate in the homologous recombination (HR)-dependent bypass of A3B/Ung1-dependent abasic sites or suppress A3B-catalyzed deamination by protecting against aberrant formation of single-stranded DNA (ssDNA). We found that the mutation spectra of A3B-induced mutations revealed genotype-specific patterns of strand-specific ssDNA formation and nucleotide incorporation across APOBEC-induced lesions. Combining these three metrics, we were able to establish a multifactorial signature of APOBEC-induced mutations specific to (1) failure to remove H3K56 acetylation, (2) defective CTF18-RFC complex function, and (3) defective HR-mediated bypass of APOBEC-induced lesions. We extended these results by analyzing mutation data for human tumors and found BRCA1/2-deficient breast cancers display three- to fourfold more APOBEC-induced mutations. Mirroring our results in yeast, Rev1-mediated C-to-G substitutions are mainly responsible for increased APOBEC-signature mutations in BRCA1/2-deficient tumors, and these mutations associate with lagging strand synthesis during replication. These results identify important factors that influence DNA replication dynamics and likely the abundance of APOBEC-induced mutation during tumor progression. They also highlight a novel role for BRCA1/2 during HR-dependent lesion bypass of APOBEC-induced lesions during cancer cell replication.


Subject(s)
BRCA1 Protein , Breast Neoplasms , Humans , Female , BRCA1 Protein/genetics , Saccharomyces cerevisiae/genetics , BRCA2 Protein/genetics , Mutagenesis , Mutation , Cytidine Deaminase/genetics , Breast Neoplasms/genetics , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism
2.
BMC Genomics ; 25(1): 52, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212682

ABSTRACT

BACKGROUND: Most skin-related traits have been studied in Caucasian genetic backgrounds. A comprehensive study on skin-associated genetic effects on underrepresented populations such as Vietnam is needed to fill the gaps in the field. OBJECTIVES: We aimed to develop a computational pipeline to predict the effect of genetic factors on skin traits using public data (GWAS catalogs and whole-genome sequencing (WGS) data from the 1000 Genomes Project-1KGP) and in-house Vietnamese data (WGS and genotyping by SNP array). Also, we compared the genetic predispositions of 25 skin-related traits of Vietnamese population to others to acquire population-specific insights regarding skin health. METHODS: Vietnamese cohorts of whole-genome sequencing (WGS) of 1008 healthy individuals for the reference and 96 genotyping samples (which do not have any skin cutaneous issues) by Infinium Asian Screening Array-24 v1.0 BeadChip were employed to predict skin-associated genetic variants of 25 skin-related and micronutrient requirement traits in population analysis and correlation analysis. Simultaneously, we compared the landscape of cutaneous issues of Vietnamese people with other populations by assessing their genetic profiles. RESULTS: The skin-related genetic profile of Vietnamese cohorts was similar at most to East Asian cohorts (JPT: Fst = 0.036, CHB: Fst = 0.031, CHS: Fst = 0.027, CDX: Fst = 0.025) in the population study. In addition, we identified pairs of skin traits at high risk of frequent co-occurrence (such as skin aging and wrinkles (r = 0.45, p = 1.50e-5) or collagen degradation and moisturizing (r = 0.35, p = 1.1e-3)). CONCLUSION: This is the first investigation in Vietnam to explore genetic variants of facial skin. These findings could improve inadequate skin-related genetic diversity in the currently published database.


Subject(s)
Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Skin , Southeast Asian People , Humans , Genome-Wide Association Study , Phenotype , Vietnam
3.
Environ Sci Technol ; 58(29): 12853-12864, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38982755

ABSTRACT

Mercury (Hg) researchers have made progress in understanding atmospheric Hg, especially with respect to oxidized Hg (HgII) that can represent 2 to 20% of Hg in the atmosphere. Knowledge developed over the past ∼10 years has pointed to existing challenges with current methods for measuring atmospheric Hg concentrations and the chemical composition of HgII compounds. Because of these challenges, atmospheric Hg experts met to discuss limitations of current methods and paths to overcome them considering ongoing research. Major conclusions included that current methods to measure gaseous oxidized and particulate-bound Hg have limitations, and new methods need to be developed to make these measurements more accurate. Developing analytical methods for measurement of HgII chemistry is challenging. While the ultimate goal is the development of ultrasensitive methods for online detection of HgII directly from ambient air, in the meantime, new surfaces are needed on which HgII can be quantitatively collected and from which it can be reversibly desorbed to determine HgII chemistry. Discussion and identification of current limitations, described here, provide a basis for paths forward. Since the atmosphere is the means by which Hg is globally distributed, accurately calibrated measurements are critical to understanding the Hg biogeochemical cycle.


Subject(s)
Air Pollutants , Atmosphere , Environmental Monitoring , Mercury , Mercury/analysis , Atmosphere/chemistry , Environmental Monitoring/methods , Air Pollutants/analysis
4.
Environ Res ; 229: 115935, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37080278

ABSTRACT

The current investigation aimed at bimetallic gold-silver nanoparticles (Au/Ag NPs), here called BM-GS NPs, synthesis using sericin protein as the reducing agent in an easy, cost-effective, and sustainable way. The obtained BM-GS NPs were characterized by UV-Visible spectroscopy, Transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDS), atomic force microscopy (AFM), Dynamic light scattering (DLS) and Zeta potential, X-ray Powder Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and Thermogravimetric analysis followed by evaluation of its multitherapeutic and photocatalytic degradation potentials. The TEM analysis revealed its spherical nature and the EDS result displayed the presence of both Ag and Au elements, confirming the synthesis of BM-GS NPs. The XRD pattern verified the crystalline nature of the nanoparticles (NPs). The DLS analysis showed an average size of 86.08 d nm and the zeta potential showed a highly negative value (-26.3 mV) which specifies that the generated bimetallic NPs are stable. The BM-GS NPs exhibited positive wound healing potential (with 63.38% of wound closure rate at 25 µg/ml, as compared to 54.42% by the untreated control) with very negligible toxicity effect on the cell viability of the normal keratinocyte cells. It also demonstrated promising antioxidant properties with 65.00%, 69.23%, and 63.03% activity at 100 µg/ml concentration for ABTS (2, 2-azinobis) (3-ethylbenzothiazoline-6-sulfonic acid)), DPPH (1, 1 diphenyl-2-picrylhydrazyl) and SOD (superoxide dismutase enzyme) assays respectively, antidiabetic potential (with a significantly high α-glucosidase inhibition potential of 99.69% at 10µg/ml concentration and 62.11% of α-amylase enzyme inhibition at 100 µg/ml concentration) and moderate tyrosinase inhibitory potential (with 17.09% at 100 µg/ml concentration). Besides, it displayed reasonable antibacterial potential with the diameter of zone of inhibition ranging between 10.89 and 12.39 mm. Further, its antibacterial mode of action reveals that its effects could be due to being very smaller, the NPs could have penetrated inside the cellular membrane thereby causing rupture and damage to the interior materials leading to cellular lysis. The photocatalytic evaluation showed that synthesized BM-GS NPs have the efficiency of degrading methylene blue dye by 34.70% within 3 h of treatment. The above findings revealed the multi-therapeutic efficacy of the sericin globular protein-mediated BM-GS NPs and its potential future applications in the cosmetics and food sector and environmental contamination management industries.


Subject(s)
Metal Nanoparticles , Sericins , Spectroscopy, Fourier Transform Infrared , Silver/chemistry , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
5.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175666

ABSTRACT

Appetite dysregulation is one of the factors contributing to anorexia, bulimia nervosa, obesity, and diabetes. Essential oils or fragrant compounds have been proven to regulate food intake and energy expenditure; hence, this study aimed to summarize their effects on appetite and the underlying mechanisms. The PubMed and Web of Science databases were searched until July 2022. Only two of the 41 studies were performed clinically, and the remaining 39 used animal models. Oral administration was the most common route, and a dosage range of 100-2000 mg/kg for mice or 2-32 mg/kg for rats was applied, with a duration of 12 days to 4 weeks, followed by inhalation (10-6-10-3 mg/cage or 10-9-10-2 mg/cm3 within 1 h). Approximately 11 essential oil samples and 22 fragrant compounds were found to increase appetite, while 12 essential oils and seven compounds decreased appetite. These fragrant components can exert appetite-regulating effects via leptin resistance, the activity of sympathetic/parasympathetic nerves, or the mRNA expression of neuropeptide Y (NPY)/agouti-related protein (AgRP), cocaine- and amphetamine-regulated transcript (CART)/proopiomelanocortin (POMC) in the hypothalamus. Fragrance memory and cognitive processes may also play roles in appetite regulation. The findings of this study accentuate the potential of essential oils and fragrant compounds to regulate appetite and eating disorders.


Subject(s)
Appetite , Oils, Volatile , Rats , Mice , Animals , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Nerve Tissue Proteins/metabolism , Neuropeptide Y/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Appetite Regulation , Agouti-Related Protein/genetics , Eating
6.
Environ Geochem Health ; 45(11): 7889-7907, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37493982

ABSTRACT

Road dust samples were collected from different areas in Ho Chi Minh City (HCMC)-the largest city in Vietnam to explore pollution characteristics, ecological and human health risks, and sources of heavy metals (HMs). Results revealed the level of HMs found in the samples from residential and industrial zones of HCMC in the order of Mn > Zn > Cu > Cr > Pb > Ni > Co > As > Cd, Zn > Mn > Cu > Cr > Pb > Ni > Co > As > Cd. Due to the high enrichment of Cu, Zn in residential areas and Cu, Pb, Zn in industrial areas, the HM contamination in these areas remained moderate to severe. The findings also revealed a rising trend in the level of HMs in road dust from the east to the west of HCMC, and a heavy metal contamination hotspot in the west. In addition, industrial areas were more contaminated with HMs, posing greater associated risks than residential areas. Children living in urban areas of HCMC were found to be exposed to unacceptable health risks. Meanwhile, adults living in industrial areas face intolerable cancer risk. Among the nine HMs, Cd, Pb, and Cu posed the greatest ecological risk, while Cr and As were the main culprits behind health risks. HMs in road dust might derive from non-exhaust vehicular emissions, crustal materials, and industrial activities. The results suggested that industrial areas to the west of HCMC should focus more on reducing and controlling severe pollution of HMs.


Subject(s)
Dust , Metals, Heavy , Child , Adult , Humans , Dust/analysis , Cadmium , Environmental Monitoring/methods , Vietnam/epidemiology , Lead , Risk Assessment , Metals, Heavy/toxicity , Metals, Heavy/analysis , Cities , China
7.
Bull Environ Contam Toxicol ; 112(1): 14, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114799

ABSTRACT

Exports of atmospheric mercury (Hg) from continental East Asia, a major Hg emitter in the globe, have been reported by several studies in neighboring countries such as Japan and Korea. Nonetheless, studies concerning this topic in Southeast Asia (SEA) countries are still limited. Accordingly, gaseous elemental mercury (GEM) has been measured from Can Thanh High School (CTHS), a suburban coastal site in southern Vietnam to study its characterization and discover the evidence of Hg trans-boundary transport from regional sources (e.g., East Asia). Data collected in July, August, and October 2022 were used in this study, and the overall GEM concentration was 1.61 ± 0.32 ng m-3. The GEM levels were higher in October than in July and August, potentially due to the discrepancy in air mass transport patterns induced by tropical monsoon and source origins of Hg. MERRA-2, backward trajectories, and CALIPSO images revealed the trans-boundary air pollution from continental East Asia to southern Vietnam, evidenced by significantly elevated (> 30%) atmospheric Hg concentrations as well as other air pollutants when the plume arrived at CTHS. Furthermore, our results also imply that atmospheric Hg exported from East Asia could influence large areas in SEA, suggesting the need for more studies in various SEA countries in the upcoming future. This study illustrated the influence of regional Hg emissions on local atmospheric Hg pollution and provided data to improve knowledge of the Hg biogeochemical cycle in SEA.


Subject(s)
Air Pollutants , Mercury , Vietnam , Environmental Monitoring/methods , Asia, Eastern , Air Pollutants/analysis , Mercury/analysis
8.
Biophys J ; 121(19): 3573-3585, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35505610

ABSTRACT

With the number of cancer cases projected to significantly increase over time, researchers are currently exploring "nontraditional" research fields in the pursuit of novel therapeutics. One emerging area that is steadily gathering interest revolves around cellular mechanical machinery. When looking broadly at the physical properties of cancer, it has been debated whether a cancer could be defined as either stiffer or softer across cancer types. With numerous articles supporting both sides, the evidence instead suggests that cancer is not particularly regimented. Instead, cancer is highly adaptable, allowing it to endure the constantly changing microenvironments cancer cells encounter, such as tumor compression and the shear forces in the vascular system and body. What allows cancer cells to achieve this adaptability are the particular proteins that make up the mechanical network, leading to a particular mechanical program of the cancer cell. Coincidentally, some of these proteins, such as myosin II, α-actinins, filamins, and actin, have either altered expression in cancer and/or some type of direct involvement in cancer progression. For this reason, targeting the mechanical system as a therapeutic strategy may lead to more efficacious treatments in the future. However, targeting the mechanical program is far from trivial. As involved as the mechanical program is in cancer development and metastasis, it also helps drive many other key cellular processes, such as cell division, cell adhesion, metabolism, and motility. Therefore, anti-cancer treatments targeting the mechanical program must take great care to avoid potential side effects. Here, we introduce the potential of targeting the mechanical program while also providing its challenges and shortcomings as a strategy for cancer treatment.


Subject(s)
Actins , Neoplasms , Actinin , Actins/metabolism , Filamins , Humans , Myosin Type II/metabolism , Neoplasms/pathology , Tumor Microenvironment
9.
Biophys J ; 121(23): 4600-4614, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36273263

ABSTRACT

Cell shape change processes, such as proliferation, polarization, migration, and cancer metastasis, rely on a dynamic network of macromolecules. The proper function of this network enables mechanosensation, the ability of cells to sense and respond to mechanical cues. Myosin II and cortexillin I, critical elements of the cellular mechanosensory machinery, preassemble in the cytoplasm of Dictyostelium cells into complexes that we have termed contractility kits (CKs). Two IQGAP proteins then differentially regulate the mechanoresponsiveness of the cortexillin I-myosin II elements within CKs. To investigate the mechanism of CK self-assembly and gain insight into possible molecular means for IQGAP regulation, we developed a coarse-grained excluded volume molecular model in which all protein polymers are represented by nm-sized spheres connected by spring-like links. The model is parameterized using experimentally measured parameters acquired through fluorescence cross-correlation spectroscopy and fluorescence correlation spectroscopy, which describe the interaction affinities and diffusion coefficients for individual molecular components, and which have also been validated via several orthogonal methods. Simulations of wild-type and null-mutant conditions implied that the temporal order of assembly of these kits is dominated by myosin II dimer formation and that IQGAP proteins mediate cluster growth. In addition, our simulations predicted the existence of "ambiguous" CKs that incorporate both classes of IQGAPs, and we confirmed this experimentally using fluorescence cross-correlation spectroscopy. The model serves to describe the formation of the CKs and how their assembly enables and regulates mechanosensation at the molecular level.


Subject(s)
Dictyostelium
10.
Invest New Drugs ; 40(1): 99-105, 2022 02.
Article in English | MEDLINE | ID: mdl-34468905

ABSTRACT

BACKGROUND: Preclinical studies have shown that the combined inhibition of EGFR and NF-kB pathways to target the RalB/TBK1 pathway led to synergistic antitumor activity. Based on this rationale, we conducted a Phase I dose-escalation study combining the EGFR inhibitor erlotinib with the NF-kB inhibitor ixazomib in advanced solid tumors. Patients and methods. Patients with advanced solid tumors were eligible. The bayesian optimal interval phase I dose escalation design was used to establish the maximum tolerated dose and recommended phase 2 dose (RP2D). Results. Nineteen patients with a range of solid tumors were enrolled. The most common treatment-related adverse events of any grade were diarrhea (42.1%, 8/19), followed by rash (36.8%, 7/19) and nausea (21.1%, 4/19). The combination RP2D for oral ixazomib was 4.0 mg on days 1, 8, and 15 of a 28-day cycle, with oral erlotinib 150 mg daily. While no patient achieved RECIST v1.1 objective responses, 3 patients with advanced sarcoma experienced durable RECIST v1.1 stable disease ≥ 6 months (8.4, 10.6, and 15.7 months) and the best response was -13% decrease in clear cell sarcoma. Conclusions. The combination of erlotinib and ixazomib was safe and well tolerated among patients with advanced cancer, with preliminary signals of antitumor activity in patients with advanced sarcoma.


Subject(s)
Antineoplastic Agents/therapeutic use , Boron Compounds/therapeutic use , Erlotinib Hydrochloride/therapeutic use , Glycine/analogs & derivatives , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Boron Compounds/administration & dosage , Boron Compounds/adverse effects , Dose-Response Relationship, Drug , ErbB Receptors/antagonists & inhibitors , Erlotinib Hydrochloride/administration & dosage , Erlotinib Hydrochloride/adverse effects , Female , Glycine/administration & dosage , Glycine/adverse effects , Glycine/therapeutic use , Humans , Male , Maximum Tolerated Dose , Middle Aged , NF-kappa B/antagonists & inhibitors
11.
Environ Sci Technol ; 56(2): 1423-1432, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34961321

ABSTRACT

Atmospheric mercury (Hg) cycling is sensitive to climate-driven changes, but links with various teleconnections remain unestablished. Here, we revealed the El Niño-Southern Oscillation (ENSO) influence on gaseous elemental mercury (GEM) concentrations recorded at a background station in East Asia using the Hilbert-Huang transform (HHT). The timing and magnitude of GEM intrinsic variations were clearly distinguished by ensemble empirical mode decomposition (EEMD), revealing the amplitude of the GEM concentration interannual variability (IAV) is greater than that for diurnal and seasonal variability. We show that changes in the annual cycle of GEM were modulated by significant IAVs at time scales of 2-7 years, highlighted by a robust GEM IAV-ENSO relationship of the associated intrinsic mode functions. With confirmation that ENSO modulates the GEM annual cycle, we then found that weaker GEM annual cycles may have resulted from El Niño-accelerated Hg evasion from the ocean. Furthermore, the relationship between ENSO and GEM is sensitive to extreme events (i.e., 2015-2016 El Niño), resulting in perturbation of the long-term trend and atmospheric Hg cycling. Future climate change will likely increase the number of extreme El Niño events and, hence, could alter atmospheric Hg cycling and influence the effectiveness evaluation of the Minamata Convention on Mercury.


Subject(s)
El Nino-Southern Oscillation , Mercury , Climate Change , Asia, Eastern , Mercury/analysis
12.
J Infect Chemother ; 28(12): 1632-1638, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36049613

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) has emerged as a critical issue in the intensive care unit (ICU) because of its high burden on patients and medical staff. Here, we examined the potential for reducing VAP incidence through physical oral care interventions without any medication. METHODS: This prospective interventional study compared VAP incidence during an 8-month baseline period (usual oral care) and a 9-month intervention period (physical oral care with sponge brush) among patients who received mechanical ventilation for >48 h in a tertiary care hospital in Vietnam from 2017 to 2019. Physical oral care was provided by general ICU nurses who had been trained by dentists and infection control nurses. VAP was diagnosed using the Clinical Pulmonary Infection Score. RESULTS: In total, 423 patients were enrolled in the baseline group and 454 patients were enrolled in the intervention group; 303 and 300 patients, respectively, were included in the analysis. Two hundred thirty-eight VAP episodes were identified: 135 (44.6%) during the baseline period and 103 (34.3%) during the intervention period. Univariate analysis revealed significant reduction of VAP occurrence in the intervention period (odds ratio = 0.65; 95% confidence interval = 0.47-0.90; P = 0.010). The incidences of VAP per 1000 ventilator-days were 63.4 (135/2128) during the baseline period and 48.4 (103/2128) during the intervention period (P = 0.038). CONCLUSIONS: Physical oral care without any medication (e.g., chlorhexidine) reduced VAP incidence in the ICU. This method could be used to reduce VAP incidence, particularly in countries with limited medical resources.


Subject(s)
Pneumonia, Ventilator-Associated , Chlorhexidine/therapeutic use , Humans , Incidence , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/prevention & control , Prospective Studies , Respiration, Artificial/adverse effects , Vietnam/epidemiology
13.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555642

ABSTRACT

Psoriasis is a chronic, immune-mediated inflammatory skin disorder. Rheum palmatum L. is a common traditional medicinal herb with anti-inflammatory and immunomodulatory activities. This study aimed to investigate the anti-psoriatic effects of the ethanolic extract from R. palmatum L. (RPE) and its chemical constituents, as well as the mechanisms underlying their therapeutic significance. An imiquimod (IMQ)-induced psoriasis-like mouse model was used to examine the anti-psoriatic effect of RPE in vivo. Network pharmacological analysis was performed to investigate the potential targets and related pathways of the RPE components, including rhein, emodin, chrysophanol, aloe-emodin, and physcion. The anti-inflammatory effects and underlying mechanisms of these components were examined using in vitro models. Topical application of RPE alleviated psoriasis-like symptoms and reduced levels of inflammatory cytokines and proliferation markers in the skin. Network pharmacological analysis revealed that RPE components target 20 genes that are linked to psoriasis-related pathways, such as IL-17, MAPK, and TNF signaling pathways. Among the five components of RPE, rhein and emodin showed inhibitory effects on TNF-α and IL-17 production in EL-4 cells, attenuated the production of CXCL8, CXCL10, CCL20, and MMP9, and reduced proliferation in HaCaT cells. Chrysophanol, aloe-emodin, and physcion were less effective than rhein and emodin in suppressing inflammatory responses and keratinocyte proliferation. The effects of these compounds might occur through the inhibition of the ERK, STAT3, and NF-κB signaling pathways. This study suggested the anti-psoriatic effect of RPE, with rhein and emodin as the main contributors that regulate multiple signaling pathways.


Subject(s)
Emodin , Psoriasis , Rheum , Animals , Mice , Anthraquinones/pharmacology , Anti-Inflammatory Agents/pharmacology , Emodin/pharmacology , Interleukin-17/metabolism , Psoriasis/drug therapy , Psoriasis/chemically induced , Rheum/chemistry
14.
Molecules ; 27(4)2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35209199

ABSTRACT

Psoriasis is a common inflammatory skin disorder, which can be associated with psychological disorders, such as anxiety and depression. This study investigated the efficacy and the mechanism of action of a natural compound coptisine using imiquimod (IMQ)-induced psoriasis mice. Coptisine reduced the severity of psoriasis-like skin lesions, decreased epidermal hyperplasia and the levels of inflammatory cytokines TNF-α, IL-17, and IL-22. Furthermore, coptisine improved IMQ-induced anxiety in mice by increasing the number of entries and time in open arms in the elevated plus maze (EPM) test. Coptisine also lowered the levels of inflammatory cytokines TNF-α and IL-1ß in the prefrontal cortex of psoriasis mice. HaCaT keratinocytes and BV2 microglial cells were used to investigate the effects of coptisine in vitro. In M5-treated HaCaT cells, coptisine decreased the production of IL-6, MIP-3α/CCL20, IP-10/CXCL10, and ICAM-1 and suppressed the NF-κB signaling pathway. In LPS-stimulated BV2 cells, coptisine reduced the secretion of TNF-α and IL-1ß. These findings suggest that coptisine might be a potential candidate for psoriasis treatment by improving both disease severity and psychological comorbidities.


Subject(s)
Anxiety , Behavior, Animal/drug effects , Berberine/analogs & derivatives , Imiquimod/adverse effects , Psoriasis , Animals , Anxiety/chemically induced , Anxiety/drug therapy , Anxiety/immunology , Anxiety/physiopathology , Berberine/pharmacology , Imiquimod/pharmacology , Male , Mice , Mice, Inbred BALB C , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/immunology , Psoriasis/physiopathology
15.
Molecules ; 27(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432096

ABSTRACT

Aromatherapy is one of the most common safer alternative treatments for psychiatric disorders with fewer side effects than conventional drugs. Here, we investigated the effects of cinnamon essential oil (CIEO) inhalation on mouse behaviors by performing different behavioral tests. CIEO inhalation showed anxiolytic effects in the elevated plus maze test, as inferred from increased time spent in open arms and decreased time spent in closed arms. Moreover, the CIEO treatment enhanced social behavior by increasing the total contact number, time spent in the center, distance traveled in the center, and total distance in the social interaction test. However, CIEO inhalation did not have any effect on performance in the open field test, tail suspension test, forced swimming test, and Y maze tests. The microarray analysis indicated that the CIEO treatment downregulated 17 genes and upregulated 15 genes in the hippocampus. Among them, Dcc, Egr2, and Fos are the most crucial genes that are involved in anxiety-related biological processes and pathways, including the regulation of neuronal death and neuroinflammation. Gas chromatography/mass spectrometry analysis revealed that cinnamaldehyde is the main component of CIEO. Cinnamaldehyde recovered MK-801-induced anxiety-related changes in the electroencephalogram power spectrum in zebrafish. Taken together, our findings suggest that CIEO and its main component cinnamaldehyde have an anxiolytic effect through the regulation of the expression of genes related to neuroinflammatory response and neuronal death.


Subject(s)
Anti-Anxiety Agents , Oils, Volatile , Mice , Animals , Cinnamomum zeylanicum , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Zebrafish , Models, Animal
16.
Metab Eng ; 66: 268-282, 2021 07.
Article in English | MEDLINE | ID: mdl-33965614

ABSTRACT

With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available. In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (ß-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells. Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.


Subject(s)
Cytomegalovirus Infections , DNA Methylation , Animals , CHO Cells , Cricetinae , Cricetulus , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Histone Code/genetics
17.
J Invertebr Pathol ; 186: 107397, 2021 11.
Article in English | MEDLINE | ID: mdl-32446865

ABSTRACT

Shrimp is not only one of the world's most valuable aquaculture species, but also a species that encounter high economic losses due to diseases. Diseases are sufficiently important to influence global supply and prices for longer periods. Profitability is the driving force behind shrimp farming and high profits associated with the absence of disease largely determines where shrimp production does take place; i.e. prevalence of disease leads to geographic relocation. In this paper, a basic economic model for the impact of the disease on a shrimp farm is provided and a Monte Carlo simulation is provided to illustrate the impact of disease on economic risk. Improved technologies, knowledge, and governance are important elements utilized in the mitigation of diseases in various shrimp producing countries. Economic aspects such as profitability in the absence and presence of diseases and cost of treatment determines the global production of shrimp along with shaping technologies and production systems.


Subject(s)
Aquaculture/economics , Penaeidae/microbiology , Penaeidae/parasitology , Animals , Penaeidae/virology
18.
J Pharmacokinet Pharmacodyn ; 48(5): 687-710, 2021 10.
Article in English | MEDLINE | ID: mdl-34100188

ABSTRACT

Recombinant human erythropoietin (rHuEPO) is effective in managing chronic kidney disease and chemotherapy-induced anemia. However, hyporesponsiveness to rHuEPO treatment was reported in about 10% of the patients. A decreased response in rats receiving a single or multiple doses of rHuEPO was also observed. In this study, we aimed to develop a quantitative systems pharmacology (QSP) model to examine hyporesponsiveness to rHuEPO in rats. Pharmacokinetic (PK) and pharmacodynamic (PD) data after a single intravenous dose of rHuEPO (100 IU/kg) was obtained from a previous study (Yan et al. in Pharm Res, 30:1026-1036, 2013) including rHuEPO plasma concentrations, erythroid precursors counts in femur bone marrow and spleen, reticulocytes (RETs), red blood cells (RBCs), and hemoglobin (HGB) in circulation. Parameter values were obtained from literature or calibrated with experimental data. Global sensitivity analysis and model-based simulations were performed to assess parameter sensitivity and hyporesponsiveness. The final QSP model adequately characterizes time courses of rHuEPO PK and nine PD endpoints in both control and treatment groups simultaneously. The model indicates that negative feedback regulation, neocytolysis, and depletion of erythroid precursors are major factors leading to hyporesponsiveness to rHuEPO treatment in rats.


Subject(s)
Erythropoietin/pharmacology , Anemia/chemically induced , Anemia/drug therapy , Anemia/metabolism , Animals , Bone Marrow/drug effects , Bone Marrow/metabolism , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythropoietin/pharmacokinetics , Evaluation Studies as Topic , Hemoglobins/metabolism , Humans , Male , Rats , Rats, Wistar , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Reticulocytes/drug effects , Reticulocytes/metabolism , Spleen/drug effects , Spleen/metabolism
19.
Biochemistry ; 59(13): 1378-1390, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32043865

ABSTRACT

Zinc-finger structure, in which a Zn2+ ion binds to four cysteines or histidines in a tetrahedral structure, is a very common motif of nucleic acid-binding proteins. The corresponding interaction model is present in 3% of the genes in the human genome. As a result, the zinc finger has been extremely useful in various therapeutic and research capacities and in biotechnology. In a stable configuration of the zinc finger, the cysteine amino acids are deprotonated and become negatively charged. Thus, the Zn2+ ion is overscreened by four cysteine charges (overcharged). Whether this overcharged configuration is also stable when such a negatively charged zinc finger binds to a negatively charged DNA molecule is unknown. We investigated how the deprotonated state of cysteine influences its structure, dynamics, and function in binding to DNA molecules by using an all-atom molecular dynamics simulation up to the microsecond range of an androgen receptor protein dimer. Our results showed that the deprotonated state of cysteine residues is essential for the mechanical stabilization of the functional, folded conformation. This state stabilizes not only the protein structure but also the protein-DNA binding complex. The differences in the structural and energetic properties of the two sequence-identical monomers are also investigated and show the strong influence of DNA on the structure of the zinc-finger protein dimer upon complexation. Our result can potentially lead to a better molecular understanding of one of the most common classes of zinc fingers.


Subject(s)
DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA/metabolism , Zinc/metabolism , Amino Acid Sequence , DNA/chemistry , DNA/genetics , DNA-Binding Proteins/genetics , Humans , Protein Array Analysis , Zinc/chemistry , Zinc Fingers
20.
AIDS Behav ; 24(11): 3132-3141, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32297068

ABSTRACT

Transgender women are at higher risk of HIV infection, however, there is a lack of information about HIV infection and related factors among transgender women in Vietnam. From February 2018 to June 2018, 456 transgender women were recruited in the study using Respondent-Driven Sampling technique. Participants completed the computer-based questionnaire and were tested for HIV serostatus. Multivariable logistic regression was used to identify factors related to HIV infection. The prevalence of HIV infection was 77 (16.5%), of which 19 (24.7%) were not aware of their HIV-positive status prior to the study. Factors associated with HIV infection included popper use (aOR 2.01, p = 0.044) and having regular male partner(s) (aOR 0.42, p = 0.006). More efforts are needed to reduce the high prevalence of HIV infection, such as expanding the reach of HIV screening and prevention programs to the transgender women population, particularly for substance users.


Subject(s)
HIV Infections/epidemiology , Sexual Partners , Transgender Persons/statistics & numerical data , Adolescent , Adult , Female , HIV Infections/diagnosis , Humans , Male , Mass Screening , Prevalence , Risk Factors , Surveys and Questionnaires , Vietnam/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL