ABSTRACT
FSHD is characterized by the misexpression of DUX4 in skeletal muscle. Although DUX4 upregulation is thought to be the pathogenic cause of FSHD, DUX4 is lowly expressed in patient samples, and analysis of the consequences of DUX4 expression has largely relied on artificial overexpression. To better understand the native expression profile of DUX4 and its targets, we performed bulk RNA-seq on a 6-day differentiation time-course in primary FSHD2 patient myoblasts. We identify a set of 54 genes upregulated in FSHD2 cells, termed FSHD-induced genes. Using single-cell and single-nucleus RNA-seq on myoblasts and differentiated myotubes, respectively, we captured, for the first time, DUX4 expressed at the single-nucleus level in a native state. We identified two populations of FSHD myotube nuclei based on low or high enrichment of DUX4 and FSHD-induced genes ("FSHD-Lo" and "FSHD Hi", respectively). FSHD-Hi myotube nuclei coexpress multiple DUX4 target genes including DUXA, LEUTX and ZSCAN4, and also upregulate cell cycle-related genes with significant enrichment of E2F target genes and p53 signaling activation. We found more FSHD-Hi nuclei than DUX4-positive nuclei, and confirmed with in situ RNA/protein detection that DUX4 transcribed in only one or two nuclei is sufficient for DUX4 protein to activate target genes across multiple nuclei within the same myotube. DUXA (the DUX4 paralog) is more widely expressed than DUX4, and depletion of DUXA suppressed the expression of LEUTX and ZSCAN4 in late, but not early, differentiation. The results suggest that the DUXA can take over the role of DUX4 to maintain target gene expression. These results provide a possible explanation as to why it is easier to detect DUX4 target genes than DUX4 itself in patient cells and raise the possibility of a self-sustaining network of gene dysregulation triggered by the limited DUX4 expression.
Subject(s)
Cell Nucleus/metabolism , Muscle Fibers, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral , RNA-Seq/methods , Single-Cell Analysis/methods , Case-Control Studies , Cell Differentiation , Cell Nucleus/chemistry , Cell Nucleus/classification , Cell Nucleus/pathology , Cells, Cultured , Gene Expression Regulation , HEK293 Cells , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Muscle Fibers, Skeletal/pathology , Muscle Fibers, Skeletal/physiology , Muscle Fibers, Skeletal/ultrastructure , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , Myoblasts/metabolism , Myoblasts/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Exome SequencingABSTRACT
Facioscapulohumeral dystrophy (FSHD) is linked to contraction of D4Z4 repeats on chromosome 4q with SMCHD1 mutations acting as a disease modifier. D4Z4 heterochromatin disruption and abnormal upregulation of the transcription factor DUX4, encoded in the D4Z4 repeat, are the hallmarks of FSHD. However, defining the precise effect of D4Z4 contraction has been difficult because D4Z4 repeats are primate-specific and DUX4 expression is very rare in highly heterogeneous patient myocytes. We generated isogenic mutant cell lines harboring D4Z4 and/or SMCHD1 mutations in a healthy human skeletal myoblast line. We found that the mutations affect D4Z4 heterochromatin differently, and that SMCHD1 mutation or disruption of DNA methylation stabilizes otherwise variegated DUX4 target activation in D4Z4 contraction mutant cells, demonstrating the critical role of modifiers. Our study revealed amplification of the DUX4 signal through downstream targets, H3.X/Y and LEUTX. Our results provide important insights into how rare DUX4 expression leads to FSHD pathogenesis.
ABSTRACT
Calcium phosphate (Ca-P) surface coating is a simple but effective way to enhance both corrosion resistance and biocompatibility of ZK60 magnesium alloy. However, cell compatibility on different Ca-P layers coated on ZK60 alloy has seldom been investigated. In this study, the effects of type, morphology and corrosion protection of several Ca-P coatings formed at pH 6.5, 7.8 and 10.2 on cell behavior were examined by using an osteoblastic cell line MC3T3-E1. Furthermore,in vivobehavior in rabbits of the alloy coated with the optimum Ca-P layer was also studied. It was found that the surface factors governed the cell morphology and density. The coating morphology plays a dominant role in these surface factors. The sample coated at pH 7.8 showed the best cellular biocompatibility, suggesting that the hydroxyapatite (HAp) layer formed at pH 7.8 was the optimum coating. In rabbits, this optimum coating enhanced remarkably the corrosion resistance of the alloy. During implantation, the outermost crystals of the HAp coating were shortened and thinned due to the dissolution of HAp caused by the body fluid of the rabbits. It is indicated that ZK60 alloy coated at pH 7.8 can be applied as a biodegradable implant.