Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genet Epidemiol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472646

ABSTRACT

A polygenic risk score (PRS) combines the associations of multiple genetic variants that could be due to direct causal effects, indirect genetic effects, or other sources of familial confounding. We have developed new approaches to assess evidence for and against causation by using family data for pairs of relatives (Inference about Causation from Examination of FAmiliaL CONfounding [ICE FALCON]) or measures of family history (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLyses [ICE CRISTAL]). Inference is made from the changes in regression coefficients of relatives' PRSs or PRS and family history before and after adjusting for each other. We applied these approaches to two breast cancer PRSs and multiple studies and found that (a) for breast cancer diagnosed at a young age, for example, <50 years, there was no evidence that the PRSs were causal, while (b) for breast cancer diagnosed at later ages, there was consistent evidence for causation explaining increasing amounts of the PRS-disease association. The genetic variants in the PRS might be in linkage disequilibrium with truly causal variants and not causal themselves. These PRSs cause minimal heritability of breast cancer at younger ages. There is also evidence for nongenetic factors shared by first-degree relatives that explain breast cancer familial aggregation. Familial associations are not necessarily due to genes, and genetic associations are not necessarily causal.

2.
Genet Epidemiol ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504141

ABSTRACT

Young breast and bowel cancers (e.g., those diagnosed before age 40 or 50 years) have far greater morbidity and mortality in terms of years of life lost, and are increasing in incidence, but have been less studied. For breast and bowel cancers, the familial relative risks, and therefore the familial variances in age-specific log(incidence), are much greater at younger ages, but little of these familial variances has been explained. Studies of families and twins can address questions not easily answered by studies of unrelated individuals alone. We describe existing and emerging family and twin data that can provide special opportunities for discovery. We present designs and statistical analyses, including novel ideas such as the VALID (Variance in Age-specific Log Incidence Decomposition) model for causes of variation in risk, the DEPTH (DEPendency of association on the number of Top Hits) and other approaches to analyse genome-wide association study data, and the within-pair, ICE FALCON (Inference about Causation from Examining FAmiliaL CONfounding) and ICE CRISTAL (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLysis) approaches to causation and familial confounding. Example applications to breast and colorectal cancer are presented. Motivated by the availability of the resources of the Breast and Colon Cancer Family Registries, we also present some ideas for future studies that could be applied to, and compared with, cancers diagnosed at older ages and address the challenges posed by young breast and bowel cancers.

3.
Breast Cancer Res ; 25(1): 127, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880807

ABSTRACT

BACKGROUND: Mammogram risk scores based on texture and density defined by different brightness thresholds are associated with breast cancer risk differently and could reveal distinct information about breast cancer risk. We aimed to investigate causal relationships between these intercorrelated mammogram risk scores to determine their relevance to breast cancer aetiology. METHODS: We used digitised mammograms for 371 monozygotic twin pairs, aged 40-70 years without a prior diagnosis of breast cancer at the time of mammography, from the Australian Mammographic Density Twins and Sisters Study. We generated normalised, age-adjusted, and standardised risk scores based on textures using the Cirrus algorithm and on three spatially independent dense areas defined by increasing brightness threshold: light areas, bright areas, and brightest areas. Causal inference was made using the Inference about Causation from Examination of FAmilial CONfounding (ICE FALCON) method. RESULTS: The mammogram risk scores were correlated within twin pairs and with each other (r = 0.22-0.81; all P < 0.005). We estimated that 28-92% of the associations between the risk scores could be attributed to causal relationships between the scores, with the rest attributed to familial confounders shared by the scores. There was consistent evidence for positive causal effects: of Cirrus, light areas, and bright areas on the brightest areas (accounting for 34%, 55%, and 85% of the associations, respectively); and of light areas and bright areas on Cirrus (accounting for 37% and 28%, respectively). CONCLUSIONS: In a mammogram, the lighter (less dense) areas have a causal effect on the brightest (highly dense) areas, including through a causal pathway via textural features. These causal relationships help us gain insight into the relative aetiological importance of different mammographic features in breast cancer. For example our findings are consistent with the brightest areas being more aetiologically important than lighter areas for screen-detected breast cancer; conversely, light areas being more aetiologically important for interval breast cancer. Additionally, specific textural features capture aetiologically independent breast cancer risk information from dense areas. These findings highlight the utility of ICE FALCON and family data in decomposing the associations between intercorrelated disease biomarkers into distinct biological pathways.


Subject(s)
Breast Neoplasms , Female , Humans , Australia/epidemiology , Breast/diagnostic imaging , Breast Density , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Mammography/methods , Risk Factors , Adult , Middle Aged , Aged
4.
Breast Cancer Res ; 24(1): 27, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35414113

ABSTRACT

BACKGROUND: Mammographic density (MD) phenotypes, including percent density (PMD), area of dense tissue (DA), and area of non-dense tissue (NDA), are associated with breast cancer risk. Twin studies suggest that MD phenotypes are highly heritable. However, only a small proportion of their variance is explained by identified genetic variants. METHODS: We conducted a genome-wide association study, as well as a transcriptome-wide association study (TWAS), of age- and BMI-adjusted DA, NDA, and PMD in up to 27,900 European-ancestry women from the MODE/BCAC consortia. RESULTS: We identified 28 genome-wide significant loci for MD phenotypes, including nine novel signals (5q11.2, 5q14.1, 5q31.1, 5q33.3, 5q35.1, 7p11.2, 8q24.13, 12p11.2, 16q12.2). Further, 45% of all known breast cancer SNPs were associated with at least one MD phenotype at p < 0.05. TWAS further identified two novel genes (SHOX2 and CRISPLD2) whose genetically predicted expression was significantly associated with MD phenotypes. CONCLUSIONS: Our findings provided novel insight into the genetic background of MD phenotypes, and further demonstrated their shared genetic basis with breast cancer.


Subject(s)
Breast Density , Breast Neoplasms , Breast Density/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Phenotype , Polymorphism, Single Nucleotide , Transcriptome
5.
Int J Cancer ; 151(8): 1304-1309, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35315524

ABSTRACT

Mammographic dense area (MDA) is an established predictor of future breast cancer risk. Recent studies have found that risk prediction might be improved by redefining MDA in effect at higher-than-conventional intensity thresholds. We assessed whether such higher-intensity MDA measures gave stronger prediction of subsequent contralateral breast cancer (CBC) risk using the Women's Environment, Cancer, and Radiation Epidemiology (WECARE) Study, a population-based CBC case-control study of ≥1 year survivors of unilateral breast cancer diagnosed between 1990 and 2008. Three measures of MDA for the unaffected contralateral breast were made at the conventional intensity threshold ("Cumulus") and at two sequentially higher-intensity thresholds ("Altocumulus" and "Cirrocumulus") using the CUMULUS software and mammograms taken up to 3 years prior to the first breast cancer diagnosis. The measures were fitted separately and together in multivariable-adjusted logistic regression models of CBC (252 CBC cases and 271 unilateral breast cancer controls). The strongest association with CBC was MDA defined using the highest intensity threshold, Cirrocumulus (odds ratio per adjusted SD [OPERA] 1.40, 95% CI 1.13-1.73); and the weakest association was MDA defined at the conventional threshold, Cumulus (1.32, 95% CI 1.05-1.66). In a model fitting the three measures together, the association of CBC with Cirrocumulus was unchanged (1.40, 95% CI 0.97-2.05), and the lower brightness measures did not contribute to the CBC model fit. These results suggest that MDA defined at a high-intensity threshold is a better predictor of CBC risk and has the potential to improve CBC risk stratification beyond conventional MDA measures.


Subject(s)
Breast Neoplasms , Unilateral Breast Neoplasms , Breast Density , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/epidemiology , Case-Control Studies , Female , Humans , Risk Factors
6.
Int J Cancer ; 148(9): 2193-2202, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33197272

ABSTRACT

Mammograms contain information that predicts breast cancer risk. We developed two novel mammogram-based breast cancer risk measures based on image brightness (Cirrocumulus) and texture (Cirrus). Their risk prediction when fitted together, and with an established measure of conventional mammographic density (Cumulus), is not known. We used three studies consisting of: 168 interval cases and 498 matched controls; 422 screen-detected cases and 1197 matched controls; and 354 younger-diagnosis cases and 944 controls frequency-matched for age at mammogram. We conducted conditional and unconditional logistic regression analyses of individually- and frequency-matched studies, respectively. We estimated measure-specific risk gradients as the change in odds per standard deviation of controls after adjusting for age and body mass index (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). For interval, screen-detected and younger-diagnosis cancer risks, the best fitting models (OPERAs [95% confidence intervals]) involved: Cumulus (1.81 [1.41-2.31]) and Cirrus (1.72 [1.38-2.14]); Cirrus (1.49 [1.32-1.67]) and Cirrocumulus (1.16 [1.03 to 1.31]); and Cirrus (1.70 [1.48 to 1.94]) and Cirrocumulus (1.46 [1.27-1.68]), respectively. The AUCs were: 0.73 [0.68-0.77], 0.63 [0.60-0.66], and 0.72 [0.69-0.75], respectively. Combined, our new mammogram-based measures have twice the risk gradient for screen-detected and younger-diagnosis breast cancer (P ≤ 10-12 ), have at least the same discriminatory power as the current polygenic risk score, and are more correlated with causal factors than conventional mammographic density. Discovering more information about breast cancer risk from mammograms could help enable risk-based personalised breast screening.


Subject(s)
Mammography/methods , Case-Control Studies , Female , Humans , Middle Aged , Risk Factors
7.
Int J Cancer ; 147(2): 375-382, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31609476

ABSTRACT

Interval breast cancers (those diagnosed between recommended mammography screens) generally have poorer outcomes and are more common among women with dense breasts. We aimed to develop a risk model for interval breast cancer. We conducted a nested case-control study within the Melbourne Collaborative Cohort Study involving 168 interval breast cancer patients and 498 matched control subjects. We measured breast density using the CUMULUS software. We recorded first-degree family history by questionnaire, measured body mass index (BMI) and calculated age-adjusted breast tissue aging, a novel measure of exposure to estrogen and progesterone based on the Pike model. We fitted conditional logistic regression to estimate odds ratio (OR) or odds ratio per adjusted standard deviation (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). The stronger risk associations were for unadjusted percent breast density (OPERA = 1.99; AUC = 0.66), more so after adjusting for age and BMI (OPERA = 2.26; AUC = 0.70), and for family history (OR = 2.70; AUC = 0.56). When the latter two factors and their multiplicative interactions with age-adjusted breast tissue aging (p = 0.01 and 0.02, respectively) were fitted, the AUC was 0.73 (95% CI 0.69-0.77), equivalent to a ninefold interquartile risk ratio. In summary, compared with using dense breasts alone, risk discrimination for interval breast cancers could be doubled by instead using breast density, BMI, family history and hormonal exposure. This would also give women with dense breasts, and their physicians, more information about the major consequence of having dense breasts-an increased risk of developing an interval breast cancer.


Subject(s)
Breast Neoplasms/diagnostic imaging , Estrogens/metabolism , Mammography/methods , Medical History Taking/methods , Progesterone/metabolism , Adult , Aged , Australia , Body Mass Index , Breast Density , Breast Neoplasms/metabolism , Case-Control Studies , Female , Humans , Logistic Models , Middle Aged , ROC Curve , Surveys and Questionnaires
8.
Int J Cancer ; 145(7): 1768-1773, 2019 10 01.
Article in English | MEDLINE | ID: mdl-30694562

ABSTRACT

Age- and body mass index (BMI)-adjusted mammographic density is one of the strongest breast cancer risk factors. DNA methylation is a molecular mechanism that could underlie inter-individual variation in mammographic density. We aimed to investigate the association between breast cancer risk-predicting mammographic density measures and blood DNA methylation. For 436 women from the Australian Mammographic Density Twins and Sisters Study and 591 women from the Melbourne Collaborative Cohort Study, mammographic density (dense area, nondense area and percentage dense area) defined by the conventional brightness threshold was measured using the CUMULUS software, and peripheral blood DNA methylation was measured using the HumanMethylation450 (HM450) BeadChip assay. Associations between DNA methylation at >400,000 sites and mammographic density measures adjusted for age and BMI were assessed within each cohort and pooled using fixed-effect meta-analysis. Associations with methylation at genetic loci known to be associated with mammographic density were also examined. We found no genome-wide significant (p < 10-7 ) association for any mammographic density measure from the meta-analysis, or from the cohort-specific analyses. None of the 299 methylation sites located at genetic loci associated with mammographic density was associated with any mammographic density measure after adjusting for multiple testing (all p > 0.05/299 = 1.7 × 10-4 ). In summary, our study did not find evidence for associations between blood DNA methylation, as measured by the HM450 assay, and conventional mammographic density measures that predict breast cancer risk.


Subject(s)
Breast Density/genetics , DNA Methylation , Genome-Wide Association Study/methods , Twins/genetics , Adult , Aged , Australia , Blood Cells/chemistry , Body Mass Index , Case-Control Studies , Epigenesis, Genetic , Female , Humans , Mammography , Middle Aged , Siblings
9.
Int J Obes (Lond) ; 43(2): 243-252, 2019 02.
Article in English | MEDLINE | ID: mdl-29777239

ABSTRACT

BACKGROUND: Several studies have reported DNA methylation in blood to be associated with body mass index (BMI), but few have investigated causal aspects of the association. We used a twin family design to assess this association at two life points and applied a novel analytical approach to appraise the evidence for causality. METHODS: The methylation profile of DNA from peripheral blood was measured for 479 Australian women from 130 twin families. Linear regression was used to estimate the associations of DNA methylation at ~410,000 cytosine-guanine dinucleotides (CpGs), and of the average DNA methylation at ~20,000 genes, with current BMI, BMI at age 18-21 years, and the change between the two (BMI change). A novel regression-based methodology for twins, Inference about Causation through Examination of Familial Confounding (ICE FALCON), was used to assess causation. RESULTS: At a 5% false discovery rate, nine, six and 12 CpGs at 24 loci were associated with current BMI, BMI at age 18-21 years and BMI change, respectively. The average DNA methylation of the BHLHE40 and SOCS3 loci was associated with current BMI, and of the PHGDH locus with BMI change. From the ICE FALCON analyses with BMI as the predictor and DNA methylation as the outcome, a woman's DNA methylation level was associated with her co-twin's BMI, and the association disappeared after conditioning on her own BMI, consistent with BMI causing DNA methylation. To the contrary, using DNA methylation as the predictor and BMI as the outcome, a woman's BMI was not associated with her co-twin's DNA methylation level, consistent with DNA methylation not causing BMI. CONCLUSION: For middle-aged women, peripheral blood DNA methylation at several genomic locations is associated with current BMI, BMI at age 18-21 years and BMI change. Our study suggests that BMI has a causal effect on peripheral blood DNA methylation.


Subject(s)
Body Mass Index , DNA Methylation/genetics , Twins, Dizygotic , Twins, Monozygotic , Adolescent , Adult , Australia , Cross-Sectional Studies , Epigenomics , Genome-Wide Association Study , Humans , Middle Aged , Twins, Dizygotic/genetics , Twins, Dizygotic/statistics & numerical data , Twins, Monozygotic/genetics , Twins, Monozygotic/statistics & numerical data , Young Adult
10.
Breast Cancer Res ; 20(1): 152, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30545395

ABSTRACT

BACKGROUND: Case-control studies show that mammographic density is a better risk factor when defined at higher than conventional pixel-brightness thresholds. We asked if this applied to interval and/or screen-detected cancers. METHOD: We conducted a nested case-control study within the prospective Melbourne Collaborative Cohort Study including 168 women with interval and 422 with screen-detected breast cancers, and 498 and 1197 matched controls, respectively. We measured absolute and percent mammographic density using the Cumulus software at the conventional threshold (Cumulus) and two increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were transformed and adjusted for age and body mass index (BMI). Using conditional logistic regression and adjusting for BMI by age at mammogram, we estimated risk discrimination by the odds ratio per adjusted standard deviation (OPERA), calculated the area under the receiver operating characteristic curve (AUC) and compared nested models using the likelihood ratio criterion and models with the same number of parameters using the difference in Bayesian information criterion (ΔBIC). RESULTS: For interval cancer, there was very strong evidence that the association was best predicted by Cumulus as a percentage (OPERA = 2.33 (95% confidence interval (CI) 1.85-2.92); all ΔBIC > 14), and the association with BMI was independent of age at mammogram. After adjusting for percent Cumulus, no other measure was associated with risk (all P > 0.1). For screen-detected cancer, however, the associations were strongest for the absolute and percent Cirrocumulus measures (all ΔBIC > 6), and after adjusting for Cirrocumulus, no other measure was associated with risk (all P > 0.07). CONCLUSION: The amount of brighter areas is the best mammogram-based measure of screen-detected breast cancer risk, while the percentage of the breast covered by white or bright areas is the best mammogram-based measure of interval breast cancer risk, irrespective of BMI. Therefore, there are different features of mammographic images that give clinically important information about different outcomes.


Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Image Processing, Computer-Assisted/methods , Mammography/methods , Aged , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Case-Control Studies , Female , Humans , Middle Aged , Prognosis , Prospective Studies , Risk Assessment/methods , Risk Factors , Software
11.
Radiology ; 286(2): 433-442, 2018 02.
Article in English | MEDLINE | ID: mdl-29040039

ABSTRACT

Purpose To compare three mammographic density measures defined by different pixel intensity thresholds as predictors of breast cancer risk for two different digital mammographic systems. Materials and Methods The Korean Breast Cancer Study included 398 women with invasive breast cancer and 737 control participants matched for age at mammography (±1 year), examination date, mammographic system, and menopausal status. Mammographic density was measured by using the automated Laboratory for Individualized Breast Radiodensity Assessment (LIBRA) software and the semiautomated Cumulus software at the conventional threshold (Cumulus) and at increasingly higher thresholds (Altocumulus and Cirrocumulus, respectively). Measures were Box-Cox-transformed and adjusted for age, body mass index, and menopausal status. Conditional logistic regression was used to estimate risk associations. For calculation of measures of predictive value, the change in odds per standard deviation (OPERA) and the area under the receiver operating characteristic curve (AUC) were used. Results For dense area, with use of the direct conversion system the OPERAs were 1.72 (95% confidence interval [CI]: 1.38, 2.15) for LIBRA, 1.58 (95% CI: 1.27, 1.97) for Cumulus, 2.04 (95% CI: 1.60, 2.59) for Altocumulus, and 3.48 (95% CI: 2.45, 4.47) for Cirrocumulus (P < .001). The corresponding AUCs were 0.70, 0.69, 0.76, and 0.89, respectively. With use of the indirect conversion system, the corresponding OPERAs were 1.50 (95% CI: 1.28, 1.76), 1.36 (95% CI: 1.16, 1.59), 1.40 (95% CI: 1.19, 1.64), and 1.47 (95% CI: 1.25, 1.73) (P < .001) and the AUCs were 0.64, 0.60, 0.61, and 0.63, respectively. Conclusion It is possible that mammographic density defined by higher pixel thresholds could capture more risk-predicting information with use of a direct conversion mammographic system; the mammographically bright, rather than white, regions are etiologically important. © RSNA, 2017.


Subject(s)
Breast Density , Breast Neoplasms/pathology , Area Under Curve , Breast Neoplasms/diagnostic imaging , Case-Control Studies , Early Detection of Cancer , Female , Humans , Mammography/methods , Middle Aged , Risk Factors
13.
Breast Cancer Res Treat ; 156(1): 163-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26907766

ABSTRACT

The aim of the present study is to determine if body mass index (BMI) during childhood is associated with the breast cancer risk factor 'adult mammographic density adjusted for age and BMI'. In 1968, the Tasmanian Longitudinal Health Study studied every Tasmanian school child born in 1961. We obtained measured heights and weights from annual school medical records across ages 7-15 years and imputed missing values. Between 2009 and 2012, we administered to 490 women a questionnaire that asked current height and weight and digitised at least one mammogram per woman. Absolute and percent mammographic densities were measured using the computer-assisted method CUMULUS. We used linear regression and adjusted for age at interview and log current BMI. The mammographic density measures were negatively associated: with log BMI at each age from 7 to 15 years (all p < 0.05); with the average of standardised log BMIs across ages 7-15 years (p < 0.0005); and more strongly with standardised log BMI measures closer to age 15 years (p < 0.03). Childhood BMI measures explained 7 and 10 % of the variance in absolute and percent mammographic densities, respectively, and 25 and 20 % of the association between current BMI and absolute and percent mammographic densities, respectively. Associations were not altered by adjustment for age at menarche. There is a negative association between BMI in late childhood and the adult mammographic density measures that predict breast cancer risk. This could explain, at least in part, why BMI in adolescence is negatively associated with breast cancer risk.


Subject(s)
Breast Density , Breast Neoplasms/diagnostic imaging , Adolescent , Body Mass Index , Breast Neoplasms/pathology , Child , Early Detection of Cancer , Female , Humans , Linear Models , Longitudinal Studies , Mammography , Middle Aged , Risk Factors , Tasmania
14.
Article in English | MEDLINE | ID: mdl-38787323

ABSTRACT

Mammographic textures show promise as breast cancer risk predictors, distinct from mammographic density. Yet, it lacks comprehensive evidence to determine the stronger risk predictor between textures and density, and the reliability of texture-based measures. We searched PubMed database for research publications, published up to November 2023, which assessed breast cancer risk associations(odds ratios[OR]) with texture-based measures and percent mammographic density(PMD), and their discrimination(area under the receiver operating characteristics curve[AUC]), using same datasets. Of 11 publications, for textures, six found stronger associations(P<0.05) with 11%-508% increases on log scale by study and four found weaker associations(P<0.05) with 14%-100% decreases, compared with PMD. Risk associations remained significant when fitting textures and PMD together. Eleven of 17 publications show greater AUCs for textures than PMD(P<0.05); increases were 0.04-0.25 by study. Discrimination of PMD and these textures jointly was significantly higher than PMD alone (P<0.05). Therefore, different textures could capture distinct breast cancer risk information, partially independent of mammographic density, suggesting their joint role in breast cancer risk prediction. Certain textures could outperform mammographic density for predicting breast cancer risk. However, obtaining reliable texture-based measures necessitates addressing various issues. Collaboration of researchers from diverse fields could be beneficial for advancing this complex field.

15.
JNCI Cancer Spectr ; 8(3)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38565262

ABSTRACT

Women with high mammographic density have an increased risk of breast cancer. They may be offered contrast-enhanced mammography to improve breast cancer screening performance. Using a cohort of women receiving contrast-enhanced mammography, we evaluated whether conventional and modified mammographic density measures were associated with breast cancer. Sixty-six patients with newly diagnosed unilateral breast cancer were frequency matched on the basis of age to 133 cancer-free control individuals. On low-energy craniocaudal contrast-enhanced mammograms (equivalent to standard mammograms), we measured quantitative mammographic density using CUMULUS software at the conventional intensity threshold ("Cumulus") and higher-than-conventional thresholds ("Altocumulus," "Cirrocumulus"). The measures were standardized to enable estimation of odds ratio per adjusted standard deviation (OPERA). In multivariable logistic regression of case-control status, only the highest-intensity measure (Cirrocumulus) was statistically significantly associated with breast cancer (OPERA = 1.40, 95% confidence interval = 1.04 to 1.89). Conventional Cumulus did not contribute to model fit. For women receiving contrast-enhanced mammography, Cirrocumulus mammographic density may better predict breast cancer than conventional quantitative mammographic density.


Subject(s)
Breast Neoplasms , Contrast Media , Mammography , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Middle Aged , Contrast Media/administration & dosage , Case-Control Studies , Aged , Breast Density , Logistic Models , Adult , Odds Ratio , Breast/diagnostic imaging , Breast/pathology
16.
Cancer Epidemiol Biomarkers Prev ; 33(2): 306-313, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38059829

ABSTRACT

BACKGROUND: Cirrus is an automated risk predictor for breast cancer that comprises texture-based mammographic features and is mostly independent of mammographic density. We investigated genetic and environmental variance of variation in Cirrus. METHODS: We measured Cirrus for 3,195 breast cancer-free participants, including 527 pairs of monozygotic (MZ) twins, 271 pairs of dizygotic (DZ) twins, and 1,599 siblings of twins. Multivariate normal models were used to estimate the variance and familial correlations of age-adjusted Cirrus as a function of age. The classic twin model was expanded to allow the shared environment effects to differ by zygosity. The SNP-based heritability was estimated for a subset of 2,356 participants. RESULTS: There was no evidence that the variance or familial correlations depended on age. The familial correlations were 0.52 (SE, 0.03) for MZ pairs and 0.16(SE, 0.03) for DZ and non-twin sister pairs combined. Shared environmental factors specific to MZ pairs accounted for 20% of the variance. Additive genetic factors accounted for 32% (SE = 5%) of the variance, consistent with the SNP-based heritability of 36% (SE = 16%). CONCLUSION: Cirrus is substantially familial due to genetic factors and an influence of shared environmental factors that was evident for MZ twin pairs only. The latter could be due to nongenetic factors operating in utero or in early life that are shared by MZ twins. IMPACT: Early-life factors, shared more by MZ pairs than DZ/non-twin sister pairs, could play a role in the variation in Cirrus, consistent with early life being recognized as a critical window of vulnerability to breast carcinogens.


Subject(s)
Breast Neoplasms , Female , Humans , Breast , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Mammography , Risk Factors , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics
17.
Int J Epidemiol ; 52(5): 1557-1568, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37349888

ABSTRACT

BACKGROUND: The extent to which known and unknown factors explain how much people of the same age differ in disease risk is fundamental to epidemiology. Risk factors can be correlated in relatives, so familial aspects of risk (genetic and non-genetic) must be considered. DEVELOPMENT: We present a unifying model (VALID) for variance in risk, with risk defined as log(incidence) or logit(cumulative incidence). Consider a normally distributed risk score with incidence increasing exponentially as the risk increases. VALID's building block is variance in risk, Δ2, where Δ = log(OPERA) is the difference in mean between cases and controls and OPERA is the odds ratio per standard deviation. A risk score correlated r between a pair of relatives generates a familial odds ratio of exp(rΔ2). Familial risk ratios, therefore, can be converted into variance components of risk, extending Fisher's classic decomposition of familial variation to binary traits. Under VALID, there is a natural upper limit to variance in risk caused by genetic factors, determined by the familial odds ratio for genetically identical twin pairs, but not to variation caused by non-genetic factors. APPLICATION: For female breast cancer, VALID quantified how much variance in risk is explained-at different ages-by known and unknown major genes and polygenes, non-genomic risk factors correlated in relatives, and known individual-specific factors. CONCLUSION: VALID has shown that, while substantial genetic risk factors have been discovered, much is unknown about genetic and familial aspects of breast cancer risk especially for young women, and little is known about individual-specific variance in risk.


Subject(s)
Breast Neoplasms , Genetic Predisposition to Disease , Female , Humans , Age Factors , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Incidence , Risk Factors
18.
Neuro Oncol ; 25(7): 1355-1365, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-36541697

ABSTRACT

BACKGROUND: Glioma accounts for approximately 80% of malignant adult brain cancer and its most common subtype, glioblastoma, has one of the lowest 5-year cancer survivals. Fifty risk-associated variants within 34 glioma genetic risk regions have been found by genome-wide association studies (GWAS) with a sex difference reported for 8q24.21 region. We conducted an Australian GWAS by glioma subtype and sex. METHODS: We analyzed genome-wide data from the Australian Genomics and Clinical Outcomes of Glioma (AGOG) consortium for 7 573 692 single nucleotide polymorphisms (SNPs) for 560 glioma cases and 2237 controls of European ancestry. Cases were classified as glioblastoma, non-glioblastoma, astrocytoma or oligodendroglioma. Logistic regression analysis was used to assess the associations of SNPs with glioma risk by subtype and by sex. RESULTS: We replicated the previously reported glioma risk associations in the regions of 2q33.3 C2orf80, 2q37.3 D2HGDH, 5p15.33 TERT, 7p11.2 EGFR, 8q24.21 CCDC26, 9p21.3 CDKN2BAS, 11q21 MAML2, 11q23.3 PHLDB1, 15q24.2 ETFA, 16p13.3 RHBDF1, 16p13.3 LMF1, 17p13.1 TP53, 20q13.33 RTEL, and 20q13.33 GMEB2 (P < .05). We also replicated the previously reported sex difference at 8q24.21 CCDC26 (P = .0024) with the association being nominally significant for both sexes (P < .05). CONCLUSIONS: Our study supports a stronger female risk association for the region 8q24.21 CCDC26 and highlights the importance of analyzing glioma GWAS by sex. A better understanding of sex differences could provide biological insight into the cause of glioma with implications for prevention, risk prediction and treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Female , Humans , Adult , Male , Genome-Wide Association Study , Genetic Predisposition to Disease , Australia , Glioma/genetics , Brain Neoplasms/genetics , Glioblastoma/genetics , Polymorphism, Single Nucleotide , Case-Control Studies , Nerve Tissue Proteins , Intracellular Signaling Peptides and Proteins/genetics
19.
Radiol Artif Intell ; 5(2): e220072, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37035431

ABSTRACT

Supplemental material is available for this article. Keywords: Mammography, Screening, Convolutional Neural Network (CNN) Published under a CC BY 4.0 license. See also the commentary by Cadrin-Chênevert in this issue.

20.
Science ; 379(6629): 253-260, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656928

ABSTRACT

Cancer genetics has to date focused on epithelial malignancies, identifying multiple histotype-specific pathways underlying cancer susceptibility. Sarcomas are rare malignancies predominantly derived from embryonic mesoderm. To identify pathways specific to mesenchymal cancers, we performed whole-genome germline sequencing on 1644 sporadic cases and 3205 matched healthy elderly controls. Using an extreme phenotype design, a combined rare-variant burden and ontologic analysis identified two sarcoma-specific pathways involved in mitotic and telomere functions. Variants in centrosome genes are linked to malignant peripheral nerve sheath and gastrointestinal stromal tumors, whereas heritable defects in the shelterin complex link susceptibility to sarcoma, melanoma, and thyroid cancers. These studies indicate a specific role for heritable defects in mitotic and telomere biology in risk of sarcomas.


Subject(s)
Genetic Predisposition to Disease , Germ-Line Mutation , Mitosis , Sarcoma , Telomere , Humans , Genetic Variation , Germ Cells , Melanoma/genetics , Mitosis/genetics , Sarcoma/genetics , Shelterin Complex/genetics , Telomere/genetics
SELECTION OF CITATIONS
SEARCH DETAIL