Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Pineal Res ; 76(3): e12954, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38618998

ABSTRACT

Osteoporosis (OP) is a severe global health issue that has significant implications for productivity and human lifespan. Gut microbiota dysbiosis has been demonstrated to be closely associated with OP progression. Melatonin (MLT) is an important endogenous hormone that modulates bone metabolism, maintains bone homeostasis, and improves OP progression. Multiple studies indicated that MLT participates in the regulation of intestinal microbiota and gut barrier function. However, the promising effects of gut microbiota-derived MLT in OP remain unclear. Here, we found that OP resulted in intestinal tryptophan disorder and decreased the production of gut microbiota-derived MLT, while administration with MLT could mitigate OP-related clinical symptoms and reverse gut microbiota dysbiosis, including the diversity of intestinal microbiota, the relative abundance of many probiotics such as Allobaculum and Parasutterella, and metabolic function of intestinal flora such as amino acid metabolism, nucleotide metabolism, and energy metabolism. Notably, MLT significantly increased the production of short-chain fatty acids and decreased trimethylamine N-oxide-related metabolites. Importantly, MLT could modulate the dynamic balance of M1/M2 macrophages, reduce the serum levels of pro-inflammatory cytokines, and restore gut-barrier function. Taken together, our results highlighted the important roles of gut microbially derived MLT in OP progression via the "gut-bone" axis associated with SCFA metabolism, which may provide novel insight into the development of MLT as a promising drug for treating OP.


Subject(s)
Melatonin , Humans , Melatonin/pharmacology , Tryptophan , Dysbiosis/drug therapy , Methylamines
2.
J Autoimmun ; 131: 102859, 2022 07.
Article in English | MEDLINE | ID: mdl-35792518

ABSTRACT

Vitiligo is an autoimmune skin disease resulting from epidermal melanocyte destruction mediated by CD8+T cells that breach the self-tolerance. Regulatory T cells (Tregs) are critical for keeping the CD8+T cells in check, but the deficiency of Tregs leading to the immune disequilibrium in vitiligo remains undefined. In the present study, we used RNA-sequencing (RNA-seq) to acquire the transcriptome data of Tregs from vitiligo patients and healthy controls, respectively. Further flow cytometry analysis and immunofluorescence assays substantiated the phenotype of Th1-like Tregs in vitiligo. CD8+T cell-/vitiligo serum-Treg co-culture assays and chemotaxis assays were used to functionally examine this subset of Tregs. As a result, RNA-seq, flow cytometry, and immunofluorescence all indicated the transition of bona fide Treg to the Th1-like T-bet+IFN-γ+Treg in vitiligo patients. Besides, these Th1-like Tregs exhibited significantly dampened suppression on the proliferation and activation of CD8+T cells and a markedly higher tendency to be chemoattracted by CXCL10 and CXCL16. More interestingly, vitiligo serum could even elicit bona fide Tregs of healthy controls to adopt the Th1-like phenotype and manifest impaired suppression. To conclude, Tregs from vitiligo patients are functionally disturbed and the Th1-skewed inflammatory microenvironment in the serum of vitiligo patients is responsible for the generation of Th1-like Tregs. We provide a clinical exploitable strategy that in addition to simply replenishing the bona fide Treg or promoting the homing of Treg to the skin, the normalization of the Th1-skewed inflammatory environment in vitiligo patients and targeting the incompetent Th1-like Tregs might be critical in the future treatment of vitiligo.


Subject(s)
T-Lymphocytes, Regulatory , Vitiligo , CD8-Positive T-Lymphocytes , Humans , Immune Tolerance , Skin
3.
Clin Sci (Lond) ; 134(10): 1127-1141, 2020 05 29.
Article in English | MEDLINE | ID: mdl-32400851

ABSTRACT

Vitiligo is a depigmentation disorder that develops as a result of the progressive disappearance of epidermal melanocytes. The elevated level of amino acid metabolite homocysteine (Hcy) has been identified as circulating marker of oxidative stress and known as a risk factor for vitiligo. However, the mechanism underlying Hcy-regulated melanocytic destruction is currently unknown. The present study aims to elucidate the effect of Hcy on melanocytic destruction and its involvement in the pathogenesis of vitiligo. Our results showed that Hcy level was significantly elevated in the serum of progressive vitiligo patients. Notably, Hcy induced cell apoptosis in melanocytes via activating reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-C/EBP homologous protein (CHOP) pathway. More importantly, folic acid, functioning in the transformation of Hcy, could lower the intracellular Hcy level and further reverse the apoptotic effect of Hcy on melanocytes. Additionally, Hcy disrupted melanogenesis whereas folic acid supplementation could reverse the melanogenesis defect induced by Hcy in melanocytes. Taken together, Hcy is highly increased in vitiligo patients at progressive stage, and our in vitro studies revealed that folic acid could protect melanocytes from Hcy-induced apoptosis and melanin synthesis inhibition, indicating folic acid as a potential benefit agent for patients with progressive vitiligo.


Subject(s)
Apoptosis , Eukaryotic Initiation Factor-2/metabolism , Homocysteine/metabolism , Melanocytes/metabolism , Melanocytes/pathology , Transcription Factor CHOP/metabolism , Vitiligo/metabolism , eIF-2 Kinase/metabolism , Adult , Apoptosis/drug effects , Case-Control Studies , Cell Proliferation/drug effects , Disease Progression , Endoplasmic Reticulum Stress/drug effects , Female , Folic Acid/pharmacology , Homocysteine/blood , Humans , Male , Melanins/biosynthesis , Melanocytes/drug effects , Models, Biological , Signal Transduction/drug effects , Vitiligo/blood
4.
J Dermatol Sci ; 114(3): 115-123, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806323

ABSTRACT

BACKGROUND: Vitiligo is a skin disorder with melanocyte destruction caused by complex interplay between multiple genetic and environmental factors. Recent studies have suggested DNA methylation is involved in the melanocyte damage, but the underlying mechanism remains unknown. OBJECTIVE: To explore the abnormal DNA methylation patterns in vitiligo lesional and nonlesional skin, and the mechanism of DNA methylation involved in vitiligo pathogenesis. METHODS: Initially, the genome-wide aberrant DNA methylation profiles in lesional and nonlesional skin of vitiligo were detect via Illumina methylation EPIC 850k Beadchip. Subsequently, a comprehensive analysis was conduct to investigate the genomic characteristics of differentially methylated regions (DMRs). Furthermore, the effects of key aberrant methylated genes on cell apoptosis and function of both melanocytes and keratinocytes were further identified and validated by western bloting, ELISA, and immunofluorescence. RESULTS: Compared with nonlesional skins, we discovered 79 significantly differentially methylated CpG sites in vitiligo lesions. These DMRs were mainly located in the gene body and the TS1500 region. Annexin A2 receptor (ANXA2R), a crucial gene in cell apoptosis, was hypermethylated in vitiligo lesions. Furthermore, we showed that ANXA2R displayed hypermethylation and low expression levels in both keratinocytes and melanocytes of vitiligo patients, and the hypermethylated-triggered downregulation of ANXA2R under oxidative stress induced melanocyte apoptosis, and inhibited the secretion of stem cell factor (SCF) from keratinocytes thus impaired the survival of melanocytes. CONCLUSIONS: Our study illustrates the DNA methylation modification in vitiligo, and further demonstrates the molecular mechanism of hypermethylated ANXA2R in the dysfunction of melanocytes under oxidative stress.


Subject(s)
Apoptosis , DNA Methylation , Keratinocytes , Melanocytes , Oxidative Stress , Vitiligo , Humans , Vitiligo/genetics , Vitiligo/pathology , Melanocytes/metabolism , Melanocytes/pathology , Apoptosis/genetics , Keratinocytes/metabolism , Adult , Male , Female , CpG Islands/genetics , Skin/pathology , Skin/metabolism , Young Adult , Case-Control Studies , Middle Aged
5.
Front Microbiol ; 14: 1156027, 2023.
Article in English | MEDLINE | ID: mdl-37250056

ABSTRACT

Simplicillium species are widely distributed with a broad spectrum of hosts and substrates. Generally, these species are entomopathogenic or mycoparasitic. Notably, some isolates of Simplicillium lanosoniveum and Simplicillium obclavatum were obtained from human tissues. In this study, two fungi were isolated from the annular itchy patch of infected skin of a 46-year-old man with diabetes mellitus. Based on a combination of morphological characteristics and phylogenetic analysis, a novel species, Simplicillium sinense, was introduced herein. It morphologically differs from the remaining Simplicillium in the size of phialides and conidia. Additionally, it grows slowly on YPD at 37°C. Antimicrobial susceptibility testing presented that this fungus is resistant to most azole antifungals. Therefore, the diagnosis of tinea faciei was made, and after 2 weeks of being treated with oral terbinafine (250 mg, once a day) and topical terbinafine cream for 1 month, the rash was mainly resolved and no recurrence happened after 6 months of follow-up. Herein, Simplicillium sinense was introduced as a new fungal taxon. Meanwhile, a case of superficial infection caused by S. sinense was reported. So far, it is the third Simplicillium species obtained from human tissue. Meanwhile, terbinafine is recommended as the first-line antifungal treatment against Simplicillium infection.

6.
Front Cell Dev Biol ; 10: 849985, 2022.
Article in English | MEDLINE | ID: mdl-35321240

ABSTRACT

Oxidative stress plays a dominant role in inflammatory skin diseases. Emerging evidence has shown that the close interaction occurred between oxidative stress and the gut microbiome. Overall, in this review, we have summarized the impact of oxidative stress and gut microbiome during the progression and treatment for inflammatory skin diseases, the interactions between gut dysbiosis and redox imbalance, and discussed the potential possible role of oxidative stress in the gut-skin axis. In addition, we have also elucidated the promising gut microbiome/redox-targeted therapeutic strategies for inflammatory skin diseases.

7.
Front Immunol ; 13: 839167, 2022.
Article in English | MEDLINE | ID: mdl-35222431

ABSTRACT

Vitiligo is a depigmented skin disorder caused by a variety of factors, including autoimmune, metabolic disturbance or their combined effect, etc. Non-targeted metabolomic analyses have denoted that dysregulated fatty acids metabolic pathways are involved in the pathogenesis of vitiligo. However, the exact category of fatty acids that participate in vitiligo development and how they functionally affect CD8+ T cells remain undefined. We aimed to determine the difference in specific fatty acids among vitiligo patients and healthy individuals and to investigate their association with clinical features in patients with vitiligo. Serum levels of fatty acids in 48 vitiligo patients and 28 healthy individuals were quantified by performing ultra-performance liquid chromatography-tandem mass spectrometry. Univariate and multivariate analyses were carried out to evaluate the significance of differences. Moreover, flow cytometry was used to explore the effect of indicated fatty acids on the function of CD8+ T cells derived from patients with vitiligo. We demonstrated that serological level of alpha-linolenic acid (ALA) was markedly upregulated, while that of arachidonic acid (ARA), arachidic acid (AA) and behenic acid were significantly downregulated in patients with vitiligo. Moreover, ALA levels were positively associated with vitiligo area scoring index (VASI) and ARA was a probable biomarker for vitiligo. We also revealed that supplementation with ARA or nordihydroguaiaretic acid (NDGA) could suppress the function of CD8+ T cells. Our results showed that vitiligo serum has disorder-specific phenotype profiles of fatty acids described by dysregulated metabolism of polyunsaturated fatty acids. Supplementation with ARA or NDGA might promote vitiligo treatment. These findings provide novel insights into vitiligo pathogenesis that might add to therapeutic options.


Subject(s)
Vitiligo , Arachidonic Acid/metabolism , CD8-Positive T-Lymphocytes/metabolism , Fatty Acids , Fatty Acids, Unsaturated/metabolism , Humans , Metabolomics
8.
Front Microbiol ; 11: 592248, 2020.
Article in English | MEDLINE | ID: mdl-33381090

ABSTRACT

Autoimmune diseases are increasingly linked to aberrant gut microbiome and relevant metabolites. However, the association between vitiligo and the gut microbiome remains to be elucidated. Thus, we conducted a case-control study through 16S rRNA sequencing and serum untargeted-metabolomic profiling based on 30 vitiligo patients and 30 matched healthy controls. In vitiligo patients, the microbial composition was distinct from that of healthy controls according to the analysis on α- and ß-diversity (P < 0.05), with a characteristic decreased Bacteroidetes: Firmicutes ratio. Meanwhile, the levels of 23 serum metabolites (including taurochenodeoxycholate and L-NG-monomethyl-arginine) in the vitiligo patients were different from those in the healthy individuals and showed significant correlations with some microbial markers. We found that Corynebacterium 1, Ruminococcus 2, Jeotgalibaca and Psychrobacter were correlated significantly with disease duration and serum IL-1ß level in vitiligo patients. And Psychrobacter was identified as the most predictive features for vitiligo by machine learning analysis ("importance" = 0.0236). Finally, combining multi-omics data and joint prediction models with accuracies up to 0.929 were established with dominant contribution of Corynebacterium 1 and Psychrobacter. Our findings replenished the previously unknown relationship between gut dysbiosis and vitiligo circulating metabolome and enrolled the gut-skin axis into the understanding of vitiligo pathogenesis.

9.
J Immunother Cancer ; 8(2)2020 12.
Article in English | MEDLINE | ID: mdl-33298620

ABSTRACT

BACKGROUND: The therapeutic effect of immune checkpoint blockers, especially the neutralizing antibodies of programmed cell death (PD-1) and its ligand programmed death ligand 1 (PD-L1), has been well verified in melanoma. Nevertheless, the dissatisfactory response rate and the occurrence of resistance significantly hinder the treatment effect. Inflammation-related molecules like A20 are greatly implicated in cancer immune response, but the role of tumorous A20 in antitumor immunity and immunotherapy efficacy remains elusive. METHODS: The association between tumorous A20 expression and the effect of anti-PD-1 immunotherapy was determined by immunoblotting, immunofluorescence staining and flow cytometry analysis of primary tumor specimens from melanoma patients. Preclinical mouse model, in vitro coculture system, immunohistochemical staining and flow cytometry analysis were employed to investigate the role of A20 in regulating the effect of anti-PD-1 immunotherapy. Bioinformatics, mass spectrum analysis and a set of biochemical analyzes were used to figure out the underlying mechanism. RESULTS: We first discovered that upregulated A20 was associated with impaired antitumor capacity of CD8+T cells and poor response to anti-PD-1 immunotherapy in melanoma patients. Subsequent functional studies in preclinical mouse model and in vitro coculture system proved that targeting tumorous A20 prominently improved the effect of immunotherapy through the invigoration of infiltrating CD8+T cells via the regulation of PD-L1. Mechanistically, A20 facilitated the ubiquitination and degradation of prohibitin to potentiate STAT3 activation and PD-L1 expression. Moreover, tumorous A20 expression was highly associated with the ratio of Ki-67 percentage in circulating PD-1+CD8+T cells to tumor burden. CONCLUSIONS: Together, our findings uncover a novel crosstalk between inflammatory molecules and antitumor immunity in melanoma, and highlight that A20 can be exploited as a promising target to bring clinical benefit to melanomas refractory to immune checkpoint blockade.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Melanoma/drug therapy , Melanoma/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/immunology , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Melanoma/pathology , Tumor Necrosis Factor alpha-Induced Protein 3/biosynthesis
10.
Cell Death Dis ; 11(6): 453, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32532953

ABSTRACT

Vitiligo is a disfiguring disease featuring chemokines-mediated cutaneous infiltration of autoreactive CD8+ T cells that kill melanocytes. Copious studies have indicated that virus invasion participates in the pathogenesis of vitiligo. IFIH1, encoding MDA5 which is an intracellular virus sensor, has been identified as a vitiligo susceptibility gene. However, the specific role of MDA5 in melanocyte death under virus invasion is not clear. In this study, we first showed that the expression of anti-CMV IgM and MDA5 was higher in vitiligo patients than healthy controls. Then, by using Poly(I:C) to imitate virus invasion, we clarified that virus invasion significantly activated MDA5 and further potentiated the keratinocyte-derived CXCL10 and CXCL16 which are the two vital chemokines for the cutaneous infiltration of CD8+ T cells in vitiligo. More importantly, IFN-ß mediated by the MDA5-MAVS-NF-κB/IRF3 signaling pathway orchestrated the secretion of CXCL10 via the JAK1-STAT1 pathway and MDA5-meidiated IRF3 transcriptionally induced the production of CXCL16 in keratinocytes under virus invasion. In summary, our results demonstrate that MDA5 signaling orchestrates the aberrant skin immunity engaging in melanocyte death via mediating CXCL10 and CXCL16 secretion, which supports MDA5 as a potential therapeutic target for vitiligo under virus invasion.


Subject(s)
Chemokines/metabolism , Interferon-Induced Helicase, IFIH1/genetics , Keratinocytes/metabolism , Melanocytes/metabolism , Vitiligo/genetics , Case-Control Studies , Humans , Neoplasm Invasiveness , Signal Transduction , Transfection
11.
Cancer Manag Res ; 11: 1697-1704, 2019.
Article in English | MEDLINE | ID: mdl-30863178

ABSTRACT

Gastric cancer is the third most common cause of cancer-related deaths and is the fifth highest incidence of cancer worldwide, especially in Eastern Asia, Central and Eastern Europe, and South America. Currently, surgery is the only curative treatment for gastric cancer; however, digestive tract reconstruction after distal gastrectomy for gastric cancer is controversial due to the postoperative complications such as reflux gastritis. There is an increasing trend toward laparoscopic uncut Roux-en-Y (URY) for radical gastrectomy. However, evidence on the feasibility of this procedure in patients undergoing laparoscopic radical distal gastrectomy is still absent. Thus, a prospective randomized trial is warranted. This is a prospective, multicenter, two-arm randomized controlled trial in which 210 patients will be randomly assigned to two groups: laparoscopic URY (n=105) and laparoscopic Billroth II plus Braun anastomosis (n=105). Each participant must be pathologically diagnosed with gastric cancer and undergo laparoscopic radical gastrectomy at Xijing Hospital and other four hospitals. The laparoscopic URY procedure is based on the Billroth II gastrojejunostomy plus Braun anastomosis, and then blocked the jejunum input loop at the stump-jejunal anastomosis. The patients' demographic and pathological characteristics will be recorded. The total and oral nutritional intake, general data, total serum protein, serum albumin, blood glucose, and temperature will be recorded before surgery and at the time of hospitalization. Postoperative adverse events will also be recorded, as well as at follow-up appointments at three months and six months after surgery. The rate of reflux gastritis will represent the primary endpoint, and other secondary endpoints, which are all recorded.

12.
Cancer Lett ; 381(1): 104-12, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27473824

ABSTRACT

Mesenchymal stem cells (MSCs) are promising vehicles for the delivery of anticancer agents in cancer therapy. However, the tumor targeting of loaded therapeutics is essential. Here, we explored a dual-targeting strategy to incorporate tumor-tropic MSC delivery with HER2-specific killing by the immunoapoptotin e23sFv-Fdt-tBid generated in our previous studies. The MSC engineering allowed simultaneous immunoapoptotin secretion and bioluminescence detection of the modified MSCs. Systemic administration of the immunoapoptotin-engineered MSCs was investigated in human HER2-reconstituted syngeneic mouse models of orthotopic and metastatic breast cancer, as well as in a xenograft nude mouse model of orthotopic gastric cancer. In vivo dual tumor targeting was confirmed by local accumulation of the bioluminescence-imaged MSCs and persistence of His-immunostained immunoapoptotins in tumor sites. The added tumor preference of MSC-secreted immunoapoptotins resulted in a significantly stronger antitumor effect compared with purified immunoapoptotins and Jurkat-delivered immunoapoptotins. This immunoapoptotin-armored MSC strategy provides a rationale for its use in extended malignancies by combining MSC mobility with redirected immunoapoptotins against a given tumor antigen.


Subject(s)
BH3 Interacting Domain Death Agonist Protein/biosynthesis , Breast Neoplasms/therapy , Genetic Therapy/methods , Mammary Neoplasms, Experimental/therapy , Mesenchymal Stem Cells/metabolism , Receptor, ErbB-2/metabolism , Stomach Neoplasms/therapy , Animals , BH3 Interacting Domain Death Agonist Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Coculture Techniques , Female , Gene Expression Regulation, Neoplastic , Humans , Jurkat Cells , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mesenchymal Stem Cell Transplantation , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Receptor, ErbB-2/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Signal Transduction/drug effects , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Time Factors , Transfection , Tumor Burden , Up-Regulation , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL