Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
EMBO J ; 41(13): e108918, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35698802

ABSTRACT

The transition from dividing progenitors to postmitotic motor neurons (MNs) is orchestrated by a series of events, which are mainly studied at the transcriptional level by analyzing the activity of specific programming transcription factors. Here, we identify a post-transcriptional role of a MN-specific transcriptional unit (MN2) harboring a lncRNA (lncMN2-203) and two miRNAs (miR-325-3p and miR-384-5p) in this transition. Through the use of in vitro mESC differentiation and single-cell sequencing of CRISPR/Cas9 mutants, we demonstrate that lncMN2-203 affects MN differentiation by sponging miR-466i-5p and upregulating its targets, including several factors involved in neuronal differentiation and function. In parallel, miR-325-3p and miR-384-5p, co-transcribed with lncMN2-203, act by repressing proliferation-related factors. These findings indicate the functional relevance of the MN2 locus and exemplify additional layers of specificity regulation in MN differentiation.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Cell Differentiation/genetics , MicroRNAs/genetics , Motor Neurons , RNA, Long Noncoding/genetics
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38279646

ABSTRACT

N6-methyladenosine (m6A) is the most abundant internal eukaryotic mRNA modification, and is involved in the regulation of various biological processes. Direct Nanopore sequencing of native RNA (dRNA-seq) emerged as a leading approach for its identification. Several software were published for m6A detection and there is a strong need for independent studies benchmarking their performance on data from different species, and against various reference datasets. Moreover, a computational workflow is needed to streamline the execution of tools whose installation and execution remains complicated. We developed NanOlympicsMod, a Nextflow pipeline exploiting containerized technology for comparing 14 tools for m6A detection on dRNA-seq data. NanOlympicsMod was tested on dRNA-seq data generated from in vitro (un)modified synthetic oligos. The m6A hits returned by each tool were compared to the m6A position known by design of the oligos. In addition, NanOlympicsMod was used on dRNA-seq datasets from wild-type and m6A-depleted yeast, mouse and human, and each tool's hits were compared to reference m6A sets generated by leading orthogonal methods. The performance of the tools markedly differed across datasets, and methods adopting different approaches showed different preferences in terms of precision and recall. Changing the stringency cut-offs allowed for tuning the precision-recall trade-off towards user preferences. Finally, we determined that precision and recall of tools are markedly influenced by sequencing depth, and that additional sequencing would likely reveal additional m6A sites. Thanks to the possibility of including novel tools, NanOlympicsMod will streamline the benchmarking of m6A detection tools on dRNA-seq data, improving future RNA modification characterization.


Subject(s)
Adenine/analogs & derivatives , Nanopore Sequencing , Nanopores , Humans , Animals , Mice , RNA/genetics , Benchmarking , Sequence Analysis, RNA/methods
3.
Nucleic Acids Res ; 50(4): 2019-2035, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35137158

ABSTRACT

It is currently unknown how many RNA transcripts are able to induce degradation of microRNAs (miRNA) via the mechanism known as target-directed miRNA degradation (TDMD). We developed TDMDfinder, a computational pipeline that identifies 'high confidence' TDMD interactions in the Human and Mouse transcriptomes by combining sequence alignment and feature selection approaches. Our predictions suggested that TDMD is widespread, with potentially every miRNA controlled by endogenous targets. We experimentally tested 37 TDMDfinder predictions, of which 17 showed TDMD effects as measured by RT-qPCR and small RNA sequencing, linking the miR-17, miR-19, miR-30, miR-221, miR-26 and miR-23 families to novel endogenous TDMDs. In some cases, TDMD was found to affect different members of the same miRNA family selectively. Features like complementarity to the miRNA 3' region, bulge size and hybridization energy appeared to be the main factors determining sensitivity. Computational analyses performed using the multiomic TCGA platform substantiated the involvement of many TDMD transcripts in human cancer and highlighted 36 highly significant interactions, suggesting TDMD as a new potential oncogenic mechanism. In conclusion, TDMDfinder provides the first inventory of bona fide human and mouse TDMDs. Available as a free webtool, TDMDfinder allows users to search for any TDMD interaction of interest by customizing its selection criteria.


Subject(s)
MicroRNAs , Neoplasms , Animals , Humans , Mammals/genetics , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Oncogenes , RNA Stability/genetics , Sequence Analysis, RNA
4.
Nucleic Acids Res ; 50(6): 3475-3489, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35244721

ABSTRACT

The SARS-CoV-2 virus has a complex transcriptome characterised by multiple, nested subgenomic RNAsused to express structural and accessory proteins. Long-read sequencing technologies such as nanopore direct RNA sequencing can recover full-length transcripts, greatly simplifying the assembly of structurally complex RNAs. However, these techniques do not detect the 5' cap, thus preventing reliable identification and quantification of full-length, coding transcript models. Here we used Nanopore ReCappable Sequencing (NRCeq), a new technique that can identify capped full-length RNAs, to assemble a complete annotation of SARS-CoV-2 sgRNAs and annotate the location of capping sites across the viral genome. We obtained robust estimates of sgRNA expression across cell lines and viral isolates and identified novel canonical and non-canonical sgRNAs, including one that uses a previously un-annotated leader-to-body junction site. The data generated in this work constitute a useful resource for the scientific community and provide important insights into the mechanisms that regulate the transcription of SARS-CoV-2 sgRNAs.


Subject(s)
COVID-19 , Nanopores , RNA, Guide, Kinetoplastida/chemistry , COVID-19/genetics , Genome, Viral/genetics , Humans , RNA Caps , RNA, Viral/genetics , RNA, Viral/metabolism , SARS-CoV-2/genetics
5.
Int J Mol Sci ; 24(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36901971

ABSTRACT

The landscape of pervasive transcription in eukaryotic genomes has made space for the identification of thousands of transcripts that are difficult to frame in a specific functional category. A new class has been broadly named as long non-coding RNAs (lncRNAs) and shortly defined as transcripts that are longer than 200 nucleotides with no or limited coding potential. So far, about 19,000 lncRNAs genes have been annotated in the human genome (Gencode 41), nearly matching the number of protein-coding genes. A key scientific priority is the functional characterization of lncRNAs, a major challenge in molecular biology that has encouraged many high-throughput efforts. LncRNA studies have been stimulated by the enormous clinical potential that these molecules promise and have been based on the characterization of their expression and functional mechanisms. In this review, we illustrate some of these mechanisms as they have been pictured in the context of breast cancer.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , RNA, Long Noncoding/genetics , Breast Neoplasms/genetics , Genome , Eukaryota/genetics
6.
Nucleic Acids Res ; 48(1): 96-115, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31777917

ABSTRACT

MicroRNA (miRNA) biogenesis is a tightly controlled multi-step process operated in the nucleus by the activity of the Microprocessor and its associated proteins. Through high resolution mass spectrometry (MS)- proteomics we discovered that this complex is extensively methylated, with 84 methylated sites associated to 19 out of its 24 subunits. The majority of the modifications occurs on arginine (R) residues (61), leading to 81 methylation events, while 30 lysine (K)-methylation events occurs on 23 sites of the complex. Interestingly, both depletion and pharmacological inhibition of the Type-I Protein Arginine Methyltransferases (PRMTs) lead to a widespread change in the methylation state of the complex and induce global decrease of miRNA expression, as a consequence of the impairment of the pri-to-pre-miRNA processing step. In particular, we show that the reduced methylation of the Microprocessor subunit ILF3 is linked to its diminished binding to the pri-miRNAs miR-15a/16, miR-17-92, miR-301a and miR-331. Our study uncovers a previously uncharacterized role of R-methylation in the regulation of miRNA biogenesis in mammalian cells.


Subject(s)
Epigenesis, Genetic , MicroRNAs/genetics , Nuclear Factor 90 Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , Repressor Proteins/genetics , Animals , Arginine/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Humans , Isotope Labeling , Lysine/metabolism , Methylation , MicroRNAs/biosynthesis , MicroRNAs/classification , Nuclear Factor 90 Proteins/metabolism , Protein Binding , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/metabolism
7.
Genome Res ; 26(4): 554-65, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26821571

ABSTRACT

The regulation of miRNAs is critical to the definition of cell identity and behavior in normal physiology and disease. To date, the dynamics of miRNA degradation and the mechanisms involved in remain largely obscure, in particular, in higher organisms. Here, we developed a pulse-chase approach based on metabolic RNA labeling to calculate miRNA decay rates at genome-wide scale in mammalian cells. Our analysis revealed heterogeneous miRNA half-lives, with many species behaving as stable molecules (T1/2> 24 h), while others, including passenger miRNAs and a number (25/129) of guide miRNAs, are quickly turned over (T1/2= 4-14 h). Decay rates were coupled with other features, including genomic organization, transcription rates, structural heterogeneity (isomiRs), and target abundance, measured through quantitative experimental approaches. This comprehensive analysis highlighted functional mechanisms that mediate miRNA degradation, as well as the importance of decay dynamics in the regulation of the miRNA pool under both steady-state conditions and during cell transitions.


Subject(s)
MicroRNAs/genetics , Animals , Argonaute Proteins/metabolism , Fibroblasts , Gene Expression Regulation , Genome-Wide Association Study , Mice , MicroRNAs/metabolism , RNA Interference , RNA Stability , Ribonuclease III/metabolism , Time Factors , Transcription, Genetic
8.
EMBO Rep ; 18(4): 603-618, 2017 04.
Article in English | MEDLINE | ID: mdl-28232627

ABSTRACT

Recent evidence indicates that the miRNA biogenesis factors DROSHA, DGCR8, and DICER exert non-overlapping functions, and have also roles in miRNA-independent regulatory mechanisms. However, it is currently unknown whether miRNA-independent functions of DGCR8 play any role in the maintenance of neuronal progenitors and during corticogenesis. Here, by phenotypic comparison of cortices from conditional Dgcr8 and Dicer knockout mice, we show that Dgcr8 deletion, in contrast to Dicer depletion, leads to premature differentiation of neural progenitor cells and overproduction of TBR1-positive neurons. Remarkably, depletion of miRNAs upon DCGR8 loss is reduced compared to DICER loss, indicating that these phenotypic differences are mediated by miRNA-independent functions of DGCR8. We show that Dgcr8 mutations induce an earlier and stronger phenotype in the developing nervous system compared to Dicer mutants and that miRNA-independent functions of DGCR8 are critical for corticogenesis. Finally, our data also suggest that the Microprocessor complex, with DROSHA and DGCR8 as core components, directly regulates the Tbr1 transcript, containing evolutionarily conserved hairpins that resemble miRNA precursors, independently of miRNAs.


Subject(s)
DNA-Binding Proteins/genetics , Gene Expression Regulation, Developmental , MicroRNAs/genetics , Neocortex/embryology , Neocortex/metabolism , RNA-Binding Proteins/genetics , Animals , Apoptosis/genetics , Basic Helix-Loop-Helix Transcription Factors , Cell Line , Cell Proliferation , DNA-Binding Proteins/metabolism , Gene Deletion , Homeodomain Proteins/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Neocortex/pathology , Nerve Tissue Proteins , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurogenesis/genetics , Neurons/metabolism , RNA Interference , RNA-Binding Proteins/metabolism , T-Box Domain Proteins , Transcription Factors/metabolism
9.
Nanomedicine ; 19: 95-105, 2019 07.
Article in English | MEDLINE | ID: mdl-31028887

ABSTRACT

Functional RNAs, such as microRNAs, are emerging as innovative tools in the treatment of aggressive and incurable cancers. In this study, we explore the potential of silica dioxide nanoparticles (SiO2NPs) in the delivery of biologically active miRNAs. Focusing on the tumor-suppressor miR-34a, we evaluated miRNAs delivery by SiO2NPs into the mammary gland, using in vitro as well as in vivo model systems. We showed that silica nanoparticles can efficiently deliver miR-34a into normal and cancer epithelial cells grown in culture without major signs of toxicity. Delivered miRNA retained the ability to silence artificial as well endogenous targets and can reduce the growth of mammospheres in 3D culture. Finally, miR-34a delivery through intra-tumor administration of SiO2NPs leads to a reduced mammary tumor growth. In conclusion, our studies suggest that silica nanoparticles can mediate the delivery of miR-34a directly into mammary tumors while preserving its molecular and biological activity.


Subject(s)
Epithelial Cells/metabolism , Mammary Neoplasms, Animal/metabolism , MicroRNAs/administration & dosage , Nanoparticles/chemistry , Animals , Cell Proliferation , Endocytosis , Female , Mice, Inbred C57BL , Nanoparticles/ultrastructure , Silicon Dioxide/chemistry
10.
Int J Mol Sci ; 19(1)2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29337876

ABSTRACT

We examined the influence of microenvironment stimuli on molecular events relevant to the biological functions of 1833-bone metastatic clone and the parental MDA-MB231 cells. (i) In both the cell lines, hepatocyte growth factor (HGF) and the osteoblasts' biological products down regulated nuclear Ets-1-protein level in concomitance with endogenous miR-125b accumulation. In contrast, under hypoxia nuclear Ets-1 was unchanged, notwithstanding the miR-125b increase. (ii) Also, the 1833-cell invasiveness and the expression of Endothelin-1, the target gene of Ets-1/HIF-1, showed opposite patterns under HGF and hypoxia. We clarified the molecular mechanism(s) reproducing the high miR-125b levels with the mimic in 1833 cells. Under hypoxia, the miR-125b mimic maintained a basal level and functional Ets-1 protein, as testified by the elevated cell invasiveness. However, under HGF ectopic miR-125b downregulated Ets-1 protein and cell motility, likely involving an Ets-1-dominant negative form sensible to serum conditions; Ets-1-activity inhibition by HGF implicated HIF-1α accumulation, which drugged Ets-1 in the complex bound to the Endothelin-1 promoter. Altogether, 1833-cell exposure to HGF would decrease Endothelin-1 transactivation and protein expression, with the possible impairment of Endothelin-1-dependent induction of E-cadherin, and the reversion towards an invasive phenotype: this was favoured by Ets-1 overexpression, which inhibited HIF-1α expression and HIF-1 activity. (iii) In MDA-MB231 cells, HGF strongly and rapidly decreased Ets-1, hampering invasiveness and reducing Ets-1-binding to Endothelin-1 promoter; HIF-1α did not form a complex with Ets-1 and Endothelin-1-luciferase activity was unchanged. Overall, depending on the microenvironment conditions and endogenous miR-125b levels, bone-metastatic cells might switch from Ets-1-dependent motility towards colonization/growth, regulated by the balance between Ets-1 and HIF-1.


Subject(s)
Bone Neoplasms/pathology , Bone Neoplasms/secondary , Breast Neoplasms/pathology , Hepatocyte Growth Factor/pharmacology , MicroRNAs/metabolism , Proto-Oncogene Protein c-ets-1/metabolism , Tumor Microenvironment , Bone Neoplasms/metabolism , Breast Neoplasms/metabolism , Cell Hypoxia/drug effects , Cell Line, Tumor , DNA/metabolism , Endothelin-1/metabolism , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , MicroRNAs/genetics , Models, Biological , Neoplasm Invasiveness , Transcriptional Activation/drug effects , Tumor Microenvironment/drug effects
11.
Clin Chem ; 62(5): 743-54, 2016 05.
Article in English | MEDLINE | ID: mdl-27127244

ABSTRACT

BACKGROUND: The identification of circulating microRNAs (miRNAs) in the blood has been recently exploited for the development of minimally invasive tests for the early detection of cancer. Nevertheless, the clinical transferability of such tests is uncertain due to still-insufficient standardization and optimization of methods to detect circulating miRNAs in the clinical setting. METHODS: We performed a series of tests to optimize the quantification of serum miRNAs that compose the miR-Test, a signature for lung cancer early detection, and systematically analyzed variables that could affect the performance of the test. We took advantage of a large-scale (>1000 samples) validation study of the miR-Test that we recently published, to evaluate, in clinical samples, the effects of analytical and preanalytical variables on the quantification of circulating miRNAs and the clinical output of the signature (risk score). RESULTS: We developed a streamlined and standardized pipeline for the processing of clinical serum samples that allows the isolation and analysis of circulating miRNAs by quantitative reverse-transcription PCR, with a throughput compatible with screening trials. The major source of analytical variation came from RNA isolation from serum, which could be corrected by use of external (spike-in) or endogenous miRNAs as a reference for normalization. We also introduced standard operating procedures and QC steps to check for unspecific fluctuations that arise from the lack of standardized criteria in the collection or handling of the samples (preanalytical factors). CONCLUSIONS: We propose our methodology as a reference for the development of clinical-grade blood tests on the basis of miRNA detection.


Subject(s)
MicroRNAs/blood , MicroRNAs/genetics , Real-Time Polymerase Chain Reaction/standards , Humans , MicroRNAs/standards
12.
Epigenetics ; 19(1): 2346694, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38739481

ABSTRACT

The transgenerational effects of exposing male mice to chronic social instability (CSI) stress are associated with decreased sperm levels of multiple members of the miR-34/449 family that persist after their mating through preimplantation embryo (PIE) development. Here we demonstrate the importance of these miRNA changes by showing that restoring miR-34c levels in PIEs derived from CSI stressed males prevents elevated anxiety and defective sociability normally found specifically in their adult female offspring. It also restores, at least partially, levels of sperm miR-34/449 normally reduced in their male offspring who transmit these sex-specific traits to their offspring. Strikingly, these experiments also revealed that inducing miR-34c levels in PIEs enhances the expression of its own gene and that of miR-449 in these cells. The same induction of embryo miR-34/449 gene expression likely occurs after sperm-derived miR-34c is introduced into oocytes upon fertilization. Thus, suppression of this miRNA amplification system when sperm miR-34c levels are reduced in CSI stressed mice can explain how a comparable fold-suppression of miR-34/449 levels can be found in PIEs derived from them, despite sperm containing ~50-fold lower levels of these miRNAs than those already present in PIEs. We previously found that men exposed to early life trauma also display reduced sperm levels of miR-34/449. And here we show that miR-34c can also increase the expression of its own gene, and that of miR-449 in human embryonic stem cells, suggesting that human PIEs derived from men with low sperm miR-34/449 levels may also contain this potentially harmful defect.


Subject(s)
Blastocyst , Epigenesis, Genetic , MicroRNAs , Spermatozoa , Stress, Psychological , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Animals , Spermatozoa/metabolism , Female , Mice , Blastocyst/metabolism , Stress, Psychological/metabolism , Stress, Psychological/genetics , Humans , Mice, Inbred C57BL
13.
Nat Commun ; 15(1): 7772, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251587

ABSTRACT

Aneuploidy is a hallmark of human cancer, yet the molecular mechanisms to cope with aneuploidy-induced cellular stresses remain largely unknown. Here, we induce chromosome mis-segregation in non-transformed RPE1-hTERT cells and derive multiple stable clones with various degrees of aneuploidy. We perform a systematic genomic, transcriptomic and proteomic profiling of 6 isogenic clones, using whole-exome DNA, mRNA and miRNA sequencing, as well as proteomics. Concomitantly, we functionally interrogate their cellular vulnerabilities, using genome-wide CRISPR/Cas9 and large-scale drug screens. Aneuploid clones activate the DNA damage response and are more resistant to further DNA damage induction. Aneuploid cells also exhibit elevated RAF/MEK/ERK pathway activity and are more sensitive to clinically-relevant drugs targeting this pathway, and in particular to CRAF inhibition. Importantly, CRAF and MEK inhibition sensitize aneuploid cells to DNA damage-inducing chemotherapies and to PARP inhibitors. We validate these results in human cancer cell lines. Moreover, resistance of cancer patients to olaparib is associated with high levels of RAF/MEK/ERK signaling, specifically in highly-aneuploid tumors. Overall, our study provides a comprehensive resource for genetically-matched karyotypically-stable cells of various aneuploidy states, and reveals a therapeutically-relevant cellular dependency of aneuploid cells.


Subject(s)
Aneuploidy , DNA Damage , MAP Kinase Signaling System , Phthalazines , Humans , MAP Kinase Signaling System/drug effects , Phthalazines/pharmacology , Cell Line, Tumor , Piperazines/pharmacology , raf Kinases/metabolism , raf Kinases/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , CRISPR-Cas Systems , Cell Line , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins c-raf/genetics , Drug Resistance, Neoplasm/genetics
14.
Cancer Discov ; 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39247952

ABSTRACT

Aneuploidy results in a stoichiometric imbalance of protein complexes that jeopardizes cellular fitness. Aneuploid cells thus need to compensate for the imbalanced DNA levels by regulating their RNA and protein levels, but the underlying molecular mechanisms remain unknown. Here, we dissected multiple diploid vs. aneuploid cell models. We found that aneuploid cells cope with transcriptional burden by increasing several RNA degradation pathways, and are consequently more sensitive to the perturbation of RNA degradation. At the protein level, aneuploid cells mitigate proteotoxic stress by reducing protein translation and increasing protein degradation, rendering them more sensitive to proteasome inhibition. These findings were recapitulated across hundreds of human cancer cell lines and primary tumors, and aneuploidy levels were significantly associated with the response of multiple myeloma patients to proteasome inhibitors. Aneuploid cells are therefore preferentially dependent on several key nodes along the gene expression process, creating clinically-actionable vulnerabilities in aneuploid cells.

15.
Curr Protoc ; 3(2): e683, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36840709

ABSTRACT

RNA modifications can alter the behavior of RNA molecules depending on where they are located on the strands. Traditionally, RNA modifications have been detected and characterized by biophysical assays, mass spectrometry, or specific next-generation sequencing techniques, but are limited to specific modifications or are low throughput. Nanopore is a platform capable of sequencing RNA strands directly, which permits transcriptome-wide detection of RNA modifications. RNA modifications alter the nanopore raw signal relative to the canonical form of the nucleotide, and several software tools detect these signal alterations. One such tool is Nanocompore, which compares the ionic current features between two different experimental conditions (i.e., with and without RNA modifications) to detect RNA modifications. Nanocompore is not limited to a single type of RNA modification, has a high specificity for detecting RNA modifications, and does not require model training. To use Nanocompore, the following steps are needed: (i) the data must be basecalled and aligned to the reference transcriptome, then the raw ionic current signals are aligned to the sequences and transformed into a Nanocompore-compatible format; (ii) finally, the statistical testing is conducted on the transformed data and produces a table of p-value predictions for the positions of the RNA modifications. These steps can be executed with several different methods, and thus we have also included two alternative protocols for running Nanocompore. Once the positions of RNA modifications are determined by Nanocompore, users can investigate their function in various metabolic pathways. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: RNA modification detection by Nanocompore Alternate Protocol 1: RNA modification detection by Nanocompore with f5c Alternate Protocol 2: RNA modification detection by Nanocompore using Nextflow.


Subject(s)
Nanopore Sequencing , Nanopores , Nanopore Sequencing/methods , RNA/chemistry , RNA/genetics , RNA/metabolism , Sequence Analysis, RNA , High-Throughput Nucleotide Sequencing/methods
16.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37786715

ABSTRACT

Chronically stressing male mice can alter the behavior of their offspring across generations. This effect is thought to be mediated by stress-induced changes in the content of specific sperm miRNAs that modify embryo development after their delivery to oocytes at fertilization. A major problem with this hypothesis is that the levels of mouse sperm miRNAs are much lower than those present in preimplantation embryos. This makes it unclear how embryos could be significantly impacted without an amplification system to magnify changes in sperm miRNA content, like those present in lower organisms where transgenerational epigenetic inheritance is well established. Here, we describe such a system for Chronic Social Instability (CSI) stress that can explain how it reduces the levels of the miR-34b,c/449a,b family of miRNAs not only in sperm of exposed males but also in preimplantation embryos ( PIEs ) derived from their mating, as well as in sperm of male offspring. Sperm-derived miR-34c normally positively regulates expression of its own gene and that of miR-449 in PIEs. This feed forward, auto-amplification process is suppressed when CSI stress reduces sperm miR-34c levels. Its suppression is important for the transmission of traits to offspring because restoring miR-34c levels in PIEs from CSI stressed males, which also restores levels of miR-449 in them, suppresses elements of elevated anxiety and defective sociability normally found specifically in their female offspring, as well as reduced sperm miR-34 and miR-449 levels normally found in male offspring, who pass on these traits to their offspring. We previously published that the content of sperm miR-34/449 is also reduced in men raised in highly abusive and/or dysfunctional families. We show here that a similar miRNA auto-amplification system functions in human embryonic stem cells. This raises the possibility that PIEs in offspring of these men also display reduced levels of miR-34/449, enhancing the potential translational significance of these studies.

17.
Mol Ther Nucleic Acids ; 34: 102052, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38028201

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a positive single-stranded RNA virus, engages in complex interactions with host cell proteins throughout its life cycle. While these interactions enable the host to recognize and inhibit viral replication, they also facilitate essential viral processes such as transcription, translation, and replication. Many aspects of these virus-host interactions remain poorly understood. Here, we employed the catRAPID algorithm and utilized the RNA-protein interaction detection coupled with mass spectrometry technology to predict and validate the host proteins that specifically bind to the highly structured 5' and 3' terminal regions of the SARS-CoV-2 RNA. Among the interactions identified, we prioritized pseudouridine synthase PUS7, which binds to both ends of the viral RNA. Using nanopore direct RNA sequencing, we discovered that the viral RNA undergoes extensive post-transcriptional modifications. Modified consensus regions for PUS7 were identified at both terminal regions of the SARS-CoV-2 RNA, including one in the viral transcription regulatory sequence leader. Collectively, our findings offer insights into host protein interactions with the SARS-CoV-2 UTRs and highlight the likely significance of pseudouridine synthases and other post-transcriptional modifications in the viral life cycle. This new knowledge enhances our understanding of virus-host dynamics and could inform the development of targeted therapeutic strategies.

18.
Mucosal Immunol ; 16(3): 326-340, 2023 06.
Article in English | MEDLINE | ID: mdl-37004750

ABSTRACT

iNKT cells account for a relevant fraction of effector T-cells in the intestine and are considered an attractive platform for cancer immunotherapy. Although iNKT cells are cytotoxic lymphocytes, their functional role in colorectal cancer (CRC) is still controversial, limiting their therapeutic use. Thus, we examined the immune cell composition and iNKT cell phenotype of CRC lesions in patients (n = 118) and different murine models. High-dimensional single-cell flow-cytometry, metagenomics, and RNA sequencing experiments revealed that iNKT cells are enriched in tumor lesions. The tumor-associated pathobiont Fusobacterium nucleatum induces IL-17 and Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in iNKT cells without affecting their cytotoxic capability but promoting iNKT-mediated recruitment of neutrophils with polymorphonuclear myeloid-derived suppressor cells-like phenotype and functions. The lack of iNKT cells reduced the tumor burden and recruitment of immune suppressive neutrophils. iNKT cells in-vivo activation with α-galactosylceramide restored their anti-tumor function, suggesting that iNKT cells can be modulated to overcome CRC-associated immune evasion. Tumor co-infiltration by iNKT cells and neutrophils correlates with negative clinical outcomes, highlighting the importance of iNKT cells in the pathophysiology of CRC. Our results reveal a functional plasticity of iNKT cells in CRC, suggesting a pivotal role of iNKT cells in shaping the tumor microenvironment, with relevant implications for treatment.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Natural Killer T-Cells , Mice , Animals , Neutrophils , Antineoplastic Agents/pharmacology , Immunotherapy , Colorectal Neoplasms/pathology , Tumor Microenvironment
19.
Front Mol Biosci ; 9: 1062448, 2022.
Article in English | MEDLINE | ID: mdl-36452457

ABSTRACT

Proximity ligation technologies are extremely powerful tools for unveiling RNA-protein interactions occurring at different stages in living cells. These approaches mainly rely on the inducible activity of enzymes (biotin ligases or peroxidases) that promiscuously biotinylate macromolecules within a 20 nm range. These enzymes can be either fused to an RNA binding protein or tethered to any RNA of interest and expressed in living cells to biotinylate the amino acids and nucleic acids of binding partners in proximity. The biotinylated molecules can then be easily affinity purified under denaturing conditions and analyzed by mass spectrometry or next generation sequencing. These approaches have been widely used in recent years, providing a potent instrument to map the molecular interactions of specific RNA-binding proteins as well as RNA transcripts occurring in mammalian cells. In addition, they permit the identification of transient interactions as well as interactions among low expressed molecules that are often missed by standard affinity purification strategies. This review will provide a brief overview of the currently available proximity ligation methods, highlighting both their strengths and shortcomings. Furthermore, it will bring further insights to the way these technologies could be further used to characterize post-transcriptional modifications that are known to regulate RNA-protein interactions.

20.
Methods Cell Biol ; 170: 59-79, 2022.
Article in English | MEDLINE | ID: mdl-35811104

ABSTRACT

MicroRNAs (miRNAs) are an evolutionarily conserved class of small (18-22 nucleotides) noncoding RNAs involved in the regulation of a variety of cellular and developmental processes. MiRNA expression is frequently altered in human cancers compared to normal tissues, potentially contributing to tumorigenesis. Generally, high-throughput profiles of miRNA expression levels are generated using bulk samples, from both normal and cancer tissues. However, cancer tissues are quite heterogeneous and might contain subpopulations critical for tumor development, i.e., cancer stem cells (CSCs) or tumor-initiating cells (TICs) with aberrant stem-like features, such as unlimited self-renewal potential. The isolation of these aberrant subpopulations from solid tumors is a relatively recent achievement, with breast cancer being one of the first solid human cancers in which CSCs have been identified and biologically characterized. Here, we describe a new methodology that can overcome the main challenge in dealing with rare cells such as SCs/CSCs, represented by the paucity of the starting material. Based on previously published protocols, used by both our and other research groups, we used the FACS-sorting approach to isolate mammary normal and cancer stem cells based on the amount of PKH26 fluorescent dye they retained. Depending on the number of SCs/CSCs isolated, we established two different protocols for the reliable and analytically sensitive detection of up to 384 miRNAs using the Taqman Low Density Array (TLDA) platform.


Subject(s)
MicroRNAs , Neoplastic Stem Cells , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/pathology , Organic Chemicals/metabolism , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL