Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Proc Natl Acad Sci U S A ; 121(27): e2400230121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38913902

ABSTRACT

Climate influences near-surface biogeochemical processes and thereby determines the partitioning of carbon dioxide (CO2) in shale, and yet the controls on carbon (C) weathering fluxes remain poorly constrained. Using a dataset that characterizes biogeochemical responses to climate forcing in shale regolith, we implement a numerical model that describes the effects of water infiltration events, gas exchange, and temperature fluctuations on soil respiration and mineral weathering at a seasonal timescale. Our modeling approach allows us to quantitatively disentangle the controls of transient climate forcing and biogeochemical mechanisms on C partitioning. We find that ~3% of soil CO2 (1.02 mol C/m2/y) is exported to the subsurface during large infiltration events. Here, net atmospheric CO2 drawdown primarily occurs during spring snowmelt, governs the aqueous C exports (61%), and exceeds the CO2 flux generated by pyrite and petrogenic organic matter oxidation (~0.2 mol C/m2/y). We show that shale CO2 consumption results from the temporal coupling between soil microbial respiration and carbonate weathering. This coupling is driven by the impacts of hydrologic fluctuations on fresh organic matter availability and CO2 transport to the weathering front. Diffusion-limited transport of gases under transient hydrological conditions exerts an important control on CO2(g) egress patterns and thus must be considered when inferring soil CO2 drawdown from the gas phase composition. Our findings emphasize the importance of seasonal climate forcing in shaping the net contribution of shale weathering to terrestrial C fluxes and suggest that warmer conditions could reduce the potential for shale weathering to act as a CO2 sink.

2.
New Phytol ; 242(4): 1661-1675, 2024 May.
Article in English | MEDLINE | ID: mdl-38358052

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.


Subject(s)
Carbon , Minerals , Mycorrhizae , Mycorrhizae/physiology , Carbon/metabolism , Minerals/metabolism , Food Chain , Hyphae , Soil Microbiology , Carbon Isotopes , Avena/microbiology , Organic Chemicals/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Plant Roots/microbiology , Soil/chemistry
3.
Clin Oral Investig ; 26(8): 5313-5323, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35484356

ABSTRACT

OBJECTIVES: The present study was conducted to investigate the correlation between (competitive) sports and the occurrence of temporomandibular dysfunctions (TMD) by comparing the prevalences in competitive, recreational, and non-athletic women. MATERIALS AND METHODS: A total of 138 women between the ages of 18 and 45 were interviewed about symptoms of TMD by means of a questionnaire. Based on their athletic performance level, the participating women were classified as competitive athletes, recreational athletes, or non-athletes (each group n = 46). RESULTS: Symptoms of TMD were notably less frequent in competitive female athletes (52.2%) than in recreational female athletes (63.0%) and female non-athletes (60.9%). With increasing training load, the prevalence of TMD decreased in both the competitive and recreational female athlete groups. CONCLUSIONS: Athletic activity in general seems to have a positive effect on the occurrence of TMD. Competitive female athletes appear less likely to suffer from symptoms of TMD than recreational athletes and non-athletes. One possible explanation for this could be the better supervision by qualified trainers and physiotherapists in competitive sports. CLINICAL RELEVANCE: Patients should be motivated to engage in sports as a protective measure against symptoms of TMD. However, it is important to ensure that they are properly instructed by experienced personnel in order to avoid unphysiological strain and negative consequences.


Subject(s)
Sports , Adolescent , Adult , Athletes , Female , Humans , Middle Aged , Prevalence , Surveys and Questionnaires , Young Adult
4.
Environ Sci Technol ; 55(19): 13345-13355, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34558892

ABSTRACT

Minerals preserve the oldest, most persistent soil carbon, and mineral characteristics appear to play a critical role in the formation of soil organic matter (SOM) associations. To test the hypothesis that roots, and differences in carbon source and microbial communities, influence mineral SOM associations over short timescales, we incubated permeable mineral bags in soil microcosms with and without plants, inside a 13CO2 labeling chamber. Mineral bags contained quartz, ferrihydrite, kaolinite, or soil minerals isolated via density separation. Using 13C-nuclear magnetic resonance, Fourier transform ion cyclotron resonance mass spectrometry, and lipidomics, we traced carbon deposition onto minerals, characterizing total carbon, 13C enrichment, and SOM chemistry over three growth stages of Avena barbata. Carbon accumulation was rapid and mineral-dependent but slowed with time; the accumulated amount was not significantly affected by root presence. However, plant roots strongly shaped the chemistry of mineral-associated SOM. Minerals incubated in a plant rhizosphere were associated with a more diverse array of compounds (with different functional groups-carbonyl, aromatics, carbohydrates, and lipids) than minerals incubated in an unplanted bulk soil control. We also found that many of the lipids that sorbed to minerals were microbially derived, including many fungal lipids. Together, our data suggest that diverse rhizosphere-derived compounds may represent a transient fraction of mineral SOM, rapidly exchanging with mineral surfaces.


Subject(s)
Carbon , Soil , Minerals , Rhizosphere , Soil Microbiology
5.
Clin Oral Investig ; 25(1): 55-65, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33367991

ABSTRACT

OBJECTIVES: The German Society of Craniomandibular Function and Disorders recommends that patients suffering from temporomandibular dysfunctions should practice sports in order to compensate for everyday stress. This raises the question as to what extent competitive athletes develop temporomandibular dysfunctions or whether their athletic activities protect them. With the present literature review, the authors intend to give an overview of the currently available publications on this topic. MATERIALS AND METHODS: A literature research in the PubMed and Google Scholar databases was performed to filter out the currently available publications on the topic 'sports, and temporomandibular dysfunction. RESULTS: Out of 114 available articles, seven met the inclusion criteria. Two other relevant articles were found in the list of references, so that in total, nine publications were picked for the review. In case numbers ranging from eight to 347 subjects, a temporomandibular dysfunction was detected with a prevalence between 11.7% and 100% for athletes and between 11.11% and 14.3% for non-athletes. Different kinds of sports were evaluated, all of them contact sports: basketball, handball, wrestling, boxing, karate, mixed martial arts, field hockey, water polo, and soccer. One study compared athletes with and without consumption of anabolic steroids, regardless of the type of sport. The level of athletic performance varied across the different studies. CONCLUSIONS: Currently, studies dealing with the effect of competitive sports on temporomandibular dysfunction are scarce. Inconsistent methodological procedures permit only limited comparability. CLINICAL RELEVANCE: A general trend, however, can already be discerned: professional athletes suffer from temporomandibular dysfunctions more frequently than non-athletes.


Subject(s)
Athletic Injuries , Basketball , Hockey , Martial Arts , Soccer , Athletes , Athletic Injuries/epidemiology , Humans
6.
Environ Sci Technol ; 54(21): 14114-14123, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33095570

ABSTRACT

Oxidative decomposition of soil organic matter determines the proportion of carbon that is either stored or emitted to the atmosphere as CO2. Full conversion of organic matter to CO2 requires oxidative mechanisms that depolymerize complex molecules into smaller, soluble monomers that can be respired by microbes. Current models attribute oxidative depolymerization largely to the activity of extracellular enzymes. Here we show that reactive manganese (Mn) and iron (Fe) intermediates, rather than other measured soil characteristics, best predict oxidative activity in temperate forest soils. Combining bioassays, spectroscopy, and wet-chemical analysis, we found that oxidative activity in surface litters was most significantly correlated to the abundance of reactive Mn(III) species. In contrast, oxidative activity in underlying mineral soils was most significantly correlated to the abundance of reactive Fe(II/III) species. Positive controls showed that both Mn(III) and Fe(II/III) species are equally potent in generating oxidative activity, but imply conventional bioassays have a systematic bias toward Fe. Combined, our results highlight the coupled biotic-abiotic nature of oxidative mechanisms, with Mn-mediated oxidation dominating within Mn-rich organic soils and Fe-mediated oxidation dominating Fe-rich mineral soils. These findings suggest microbes rely on different oxidative strategies depending on the relative availability of Fe and Mn in a given soil environment.


Subject(s)
Iron , Soil , Manganese , Oxidation-Reduction , Oxidative Stress
7.
Environ Microbiol ; 20(12): 4444-4460, 2018 12.
Article in English | MEDLINE | ID: mdl-30047192

ABSTRACT

Mineral-associated microbes drive many critical soil processes, including mineral weathering, soil aggregation and cycling of mineral-sorbed organic matter. To investigate the interactions between soil minerals and microbes in the rhizosphere, we incubated three types of minerals (ferrihydrite, kaolinite and quartz) and a native soil mineral fraction near roots of a common Californian annual grass, Avena barbata, growing in its resident soil. We followed microbial colonization of these minerals for up to 2.5 months - the plant's lifespan. Bacteria and fungi that colonized mineral surfaces during this experiment differed across mineral types and differed from those in the background soil, implying that microbial colonization was the result of processes in addition to passive movement with water to mineral surfaces. Null model analysis revealed that dispersal limitation was a dominant factor structuring mineral-associated microbial communities for all mineral types. Once bacteria arrived at a mineral surface, capacity for rapid growth appeared important, as ribosomal copy number was significantly correlated with relative enrichment on minerals. Glomeromycota (a phylum associated with arbuscular mycorrhizal fungi) appeared to preferentially associate with ferrihydrite surfaces. The mechanisms enabling the colonization of soil minerals may be foundational in shaping the overall soil microbiome composition and development of persistent organic matter in soils.


Subject(s)
Bacteria/metabolism , Microbiota , Minerals/metabolism , Mycorrhizae/metabolism , Rhizosphere , Soil Microbiology , Avena/microbiology , Bacteria/growth & development , Plant Roots/microbiology
8.
Environ Sci Technol ; 52(21): 12349-12357, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30260632

ABSTRACT

The formation of reactive manganese (Mn) species is emerging as a key regulator of carbon oxidation rates, and thus CO2 emissions, in soils and sediments. Many subsurface environments are characterized by steep oxygen gradients, forming oxic-anoxic interfaces that enable rapid redox cycling of Mn. Here, we examined the impact of Mn(II)aq oxidation along oxic-anoxic interfaces on carbon oxidation in soils using laboratory-based diffusion reactors. A combination of cyclic voltammetry, X-ray absorption spectroscopy, and X-ray microprobe imaging revealed a tight coupling between Mn(II)aq oxidation and carbon oxidation at the oxic-anoxic interface. Specifically, zones of Mn(II)aq oxidation across the oxic-anoxic transition also exhibited the greatest lignin oxidation potential, carbon solubilization, and oxidation. Microprobe imaging further revealed that the generation of Mn(III)-dominated precipitates coincided with carbon oxidation. Combined, our findings demonstrate that biotic Mn(II)aq oxidation, specifically the formation of Mn(III) species, contributes to carbon oxidation along oxic-anoxic interfaces in soils and sediments. Our results suggest that we should regard carbon oxidation not merely as a function of molecular composition, which insufficiently predicts rates, but in relation to microenvironments favoring the formation of critically important oxidants such as Mn(III).


Subject(s)
Carbon , Manganese , Oxidation-Reduction , Soil , X-Ray Absorption Spectroscopy
9.
Environ Sci Technol ; 52(24): 14129-14139, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30451506

ABSTRACT

Oscillating redox conditions are a common feature of humid tropical forest soils, driven by an ample supply and dynamics of reductants, high moisture, microbial oxygen consumption, and finely textured clays that limit diffusion. However, the net result of variable soil redox regimes on iron (Fe) mineral dynamics and associated carbon (C) forms and fluxes is poorly understood in tropical soils. Using a 44-day redox incubation experiment with humid tropical forest soils from Puerto Rico, we examined patterns in Fe and C transformations under four redox regimes: static anoxic, "flux 4-day" (4d oxic, 4d anoxic), "flux 8-day" (8d oxic, 4d anoxic) and static oxic. Prolonged anoxia promoted reductive dissolution of Fe-oxides, and led to an increase in soluble Fe(II) and amorphous Fe oxide pools. Preferential dissolution of the less-crystalline Fe pool was evident immediately following a shift in bulk redox status (oxic to anoxic), and coincided with increased dissolved organic C, presumably due to acidification or direct release of organic matter (OM) from dissolving Fe(III) mineral phases. The average nominal oxidation state of water-soluble C was lowest under persistent anoxic conditions, suggesting that more reduced organic compounds were metabolically unavailable for microbial consumption under reducing conditions. Anoxic soil compounds had high H/C values (and were similar to lignin-like compounds) whereas oxic soil compounds had higher O/C values, akin to tannin- and cellulose-like components. Cumulative respiration derived from native soil organic C was highest in static oxic soils. These results show how Fe minerals and Fe-OM interactions in tropical soils are highly sensitive to variable redox effects. Shifting soil oxygen availability rapidly impacted exchanges between mineral-sorbed and aqueous C pools, increased the dissolved organic C pool under anoxic conditions implying that the periodicity of low-redox events may control the fate of C in wet tropical soils.


Subject(s)
Iron , Soil , Carbon , Forests , Oxidation-Reduction , Puerto Rico
10.
Proc Natl Acad Sci U S A ; 112(38): E5253-60, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26372954

ABSTRACT

Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.


Subject(s)
Forests , Manganese/chemistry , Soil/chemistry , Carbon/chemistry , Climate Change , Ecosystem , Lignin/chemistry , Magnetic Resonance Spectroscopy , Oxidation-Reduction , Oxygen/chemistry , Plant Leaves/metabolism , Plants , Soil Microbiology , Synchrotrons , Time Factors
11.
Environ Sci Technol ; 51(19): 11096-11104, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28853878

ABSTRACT

Iron (Fe) bioavailability depends upon its solubility and oxidation state, which are strongly influenced by complexation with natural organic matter (NOM). Despite observations of Fe(II)-NOM associations under conditions favorable for Fe oxidation, the molecular mechanisms by which NOM influences Fe(II) oxidation remain poorly understood. In this study, we used X-ray absorption spectroscopy to determine the coordination environment of Fe(II) associated with NOM (as-received and chemically reduced) at pH 7, and investigated the effect of NOM complexation on Fe(II) redox stability. Linear combination fitting of extended X-ray absorption fine structure (EXAFS) data using reference organic ligands demonstrated that Fe(II) was complexed primarily by carboxyl functional groups in reduced NOM. Functional groups more likely to preserve Fe(II) represent much smaller fractions of NOM-bound Fe(II). Fe(II) added to anoxic solutions of as-received NOM oxidized to Fe(III) and remained organically complexed. Iron oxidation experiments revealed that the presence of reduced NOM limited Fe(II) oxidation, with over 50% of initial Fe(II) remaining after 4 h. These results suggest reduced NOM may preserve Fe(II) by functioning both as redox buffer and complexant, which may help explain the presence of Fe(II) in oxic circumneutral waters.


Subject(s)
Ferrous Compounds , Buffers , Iron , Oxidation-Reduction , X-Ray Absorption Spectroscopy
12.
Environ Sci Technol ; 51(14): 7881-7891, 2017 Jul 18.
Article in English | MEDLINE | ID: mdl-28613853

ABSTRACT

The commonly held assumption that photodependent processes dominate H2O2 production in natural waters has been recently questioned. Here, we present evidence for the unrecognized and light-independent generation of H2O2 in groundwater of an alluvial aquifer adjacent to the Colorado River near Rifle, CO. In situ detection using a sensitive chemiluminescent method suggests H2O2 concentrations ranging from lower than the detection limit (<1 nM) to 54 nM along the vertical profiles obtained at various locations across the aquifer. Our results also suggest dark formation of H2O2 is more likely to occur in transitional redox environments where reduced elements (e.g., reduced metals and NOM) meet oxygen, such as oxic-anoxic interfaces. A simplified kinetic model involving interactions among iron, reduced NOM, and oxygen was able to reproduce roughly many, but not all, of the features in our detected H2O2 profiles, and therefore there are other minor biological and/or chemical controls on H2O2 steady-state concentrations in such aquifer. Because of its transient nature, the widespread presence of H2O2 in groundwater suggests the existence of a balance between H2O2 sources and sinks, which potentially involves a cascade of various biogeochemically important processes that could have significant impacts on metal/nutrient cycling in groundwater-dependent ecosystems, such as wetlands and springs. More importantly, our results demonstrate that reactive oxygen species are not only widespread in oceanic and atmospheric systems but also in the subsurface domain, possibly the least understood component of biogeochemical cycles.


Subject(s)
Groundwater , Hydrogen Peroxide , Colorado , Environmental Monitoring , Water Microbiology , Wetlands
13.
Environ Sci Technol ; 51(9): 4918-4927, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28365989

ABSTRACT

Hexavalent chromium, Cr(VI), is a widespread and toxic groundwater contaminant. Reductive immobilization to Cr(III) is a treatment option, but its success depends on the long-term potential for reduced chromium precipitates to remain immobilized under oxidizing conditions. In this unique long-term study, aquifer sediments subjected to reductive Cr(VI) immobilization under different biogeochemical regimes were tested for their susceptibility to reoxidation. After reductive treatment for 1 year, sediments were exposed to oxygenated conditions for another 2 years in flow-through, laboratory columns. Under oxidizing conditions, immobilized chromium reduced under predominantly denitrifying conditions was mobilized at low concentrations (≪1 µM Cr(VI); ∼ 3% of Cr(III) deposited) that declined over time. A conceptual model of a limited pool of more soluble Cr(III), and a larger pool of relatively insoluble Cr(III), is proposed. In contrast, almost no chromium was mobilized from columns reduced under predominantly fermentative conditions, and where reducing conditions persisted for several months after introduction of oxidizing conditions, presumably due to the presence of a reservoir of reduced species generated during reductive treatment. The results from this 3-year study demonstrate that biogeochemical conditions present during reductive treatment, and the potential for buildup of reducing species, will impact the long-term sustainability of the remediation effort.


Subject(s)
Chromium , Groundwater , Oxidation-Reduction
14.
Environ Sci Technol ; 50(1): 25-35, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26605981

ABSTRACT

Natural organic matter is often associated with Fe(III) oxyhydroxides, and may be stabilized as a result of coprecipitation or sorption to their surfaces. However, the significance of this association in relation to Fe and C dynamics and biogeochemical cycling, and the mechanisms responsible for organic matter stabilization as a result of interaction with minerals under various environmental conditions (e.g., pH, Eh, etc.) are not entirely understood. The preservation of mineral-bound OM may be affected by OM structure and mineral identity, and bond types between OM and minerals may be central to influencing the stability, transformation and composition of both organic and mineral components under changing environmental conditions. Here we use bulk and submicron-scale spectroscopic synchrotron methods to examine the in situ transformation of OM-bearing, biogenic ferrihydrite stalks (Gallionella ferruginea-like), which formed following injection of oxygenated groundwater into a saturated alluvial aquifer at the Rifle, CO field site. A progression from oxidizing to reducing conditions during an eight-month period triggered the aging and reductive transformation of Gallionella-like ferrihydrite stalks to Fe (hydroxy)carbonates and Fe sulfides, as well as alteration of the composition and amount of OM. Spectromicroscopic measurements showed a gradual decrease in reduced carbon forms (aromatic/alkene, aliphatic C), a relative increase in amide/carboxyl functional groups and a significant increase in carbonate in the stalk structures, and the appearance of organic globules not associated with stalk structures. Biogenic stalks lost ∼30% of their initial organic carbon content. Conversely, a significant increase in bulk organic matter accompanied these transformations. The character of bulk OM changed in parallel with mineralogical transformations, showing an increase in aliphatic, aromatic and amide functional groups. These changes likely occurred as a result of an increase in microbial activity, or biomass production under anoxic conditions. By the end of this experiment, a substantial fraction of organic matter remained in identifiable Fe containing stalks, but carbon was also present in additional pools, for example, organic matter globules and iron carbonate minerals.


Subject(s)
Carbon/analysis , Ferric Compounds/chemistry , Iron/analysis , Carbonates/chemistry , Chemical Precipitation , Diphosphates/analysis , Groundwater/chemistry , Hydroxylamine/analysis , Iron/chemistry , Minerals/chemistry , Oxidation-Reduction , Particle Size , X-Ray Absorption Spectroscopy , X-Ray Diffraction
15.
Environ Sci Technol ; 50(4): 1731-40, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26789138

ABSTRACT

Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.


Subject(s)
Hydroquinones/chemistry , Iron/chemistry , Benzoquinones/chemistry , Catalysis , Darkness , Hydrogen-Ion Concentration , Kinetics , Models, Theoretical , Oxidation-Reduction , Oxygen/chemistry , Superoxides/chemistry , Thermodynamics
16.
Environ Sci Technol ; 49(17): 10357-65, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26226398

ABSTRACT

Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.


Subject(s)
Ferric Compounds/chemistry , Iron/chemistry , Uranium/chemistry , Adsorption , Colorado , Geologic Sediments/chemistry , Oxidation-Reduction , X-Ray Absorption Spectroscopy , X-Ray Diffraction
17.
J Environ Qual ; 44(3): 729-38, 2015 May.
Article in English | MEDLINE | ID: mdl-26024254

ABSTRACT

Microbially mediated reductive immobilization of chromium is a possible remediation technique for sites contaminated with Cr(VI). This study is part of a broader effort investigating the biogeochemical mechanisms for Cr(VI) reduction in Hanford 100H aquifer sediments using flow-through laboratory columns. It had previously been shown that reduced chromium in the solid phase was in the form of freshly precipitated mixed-phase Cr(III)-Fe(III) (hydr)oxides, irrespective of the biogeochemical conditions in the columns. In this study, the reduced Cr phases in the columns were investigated further using spectroscopy to understand the structure and mechanisms involved in the formation of the end products. Several samples representing potential processes that could be occurring in the columns were synthesized in the laboratory and characterized using X-ray absorption near edge structure (XANES) and X-ray scattering. The XANES of Cr(III) particles in the columns most closely resembled those from synthetic samples produced by the abiotic reaction of Cr(VI) with microbially reduced Fe(II). Microbially mediated Cr-Fe reduction products were distinct from abiotic Cr-Fe (hydr)oxides [CrFe(OH)] and organically complexed Cr(III) sorbed onto the surface of a mixed ferrihydrite-goethite mineral phase. Furthermore, analyses of the abiotically synthesized samples revealed that even the end products of purely abiotic, iron-mediated reduction of Cr(VI) are affected by factors such as the presence of excess aqueous Fe(II) and cellular matter. These results suggest that CrFe(OH) phases made under realistic subsurface conditions or in biotic cultures are structurally different from pure Cr(OH) or laboratory-synthesized CrFe(OH). The observed structural differences imply that the reactivity and stability of biogenic CrFe(OH) could potentially be different from that of abiotic CrFe(OH).

18.
Environ Sci Technol ; 48(18): 10699-706, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25084058

ABSTRACT

In this study of reductive chromium immobilization, we found that flow-through columns constructed with homogenized aquifer sediment and continuously infused with lactate, chromate, and various native electron acceptors diverged to have very different Cr(VI)-reducing biogeochemical regimes characterized by either denitrifying or fermentative conditions (as indicated by effluent chemical data, 16S rRNA pyrotag data, and metatranscriptome data). Despite the two dramatically different biogeochemical environments that evolved in the columns, these regimes created similar Cr(III)-Fe(III) hydroxide precipitates as the predominant Cr(VI) reduction product, as characterized by micro-X-ray fluorescence and micro-X-ray absorption near-edge structure analysis. We discuss two conflicting scenarios of microbially mediated formation of Cr(III)-Fe(III) precipitates, each of which is both supported and contradicted by different lines of evidence: (1) enzymatic reduction of Cr(VI) to Cr(III) followed by coprecipitation of Cr(III) and Fe(III) and (2) both regimes generated at least small amounts of Fe(II), which abiotically reduced Cr(VI) to form a Cr-Fe precipitate. Evidence of zones with different levels of Cr(VI) reduction suggest that local heterogeneity may have confounded interpretation of processes based on bulk measurements. This study indicates that the bulk redox status and biogeochemical regime, as categorized by the dominant electron-accepting process, do not necessarily control the final product of Cr(VI) reduction.


Subject(s)
Chromium/chemistry , Groundwater/chemistry , Bacteria/genetics , Cluster Analysis , Denitrification/genetics , Fermentation/genetics , Gene Expression Regulation, Bacterial , Iron/chemistry , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Spectrometry, X-Ray Emission , Transcriptome/genetics , Waste Disposal, Fluid , X-Ray Absorption Spectroscopy
19.
Anal Chem ; 85(12): 6100-6, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23675904

ABSTRACT

Soil organic matter (SOM) is important because its decay drives life processes in the biosphere. Analysis of organic compounds in geological systems is difficult because of their intimate association with mineral surfaces. To date there is no procedure capable of quantitatively separating organic from mineral phases without creating artifacts or mass loss. Therefore, analytical techniques that can (a) generate information about both organic and mineral phases simultaneously and (b) allow the examination of predetermined high-interest regions of the sample as opposed to conventional bulk analytical techniques are valuable. Laser desorption synchrotron postionization (synchrotron-LDPI) mass spectrometry is introduced as a novel analytical tool to characterize the molecular properties of organic compounds in mineral-organic samples from terrestrial systems, and it is demonstrated that, when combined with secondary ion mass spectrometry (SIMS), it can provide complementary information on mineral composition. Mass spectrometry along a decomposition gradient in density fractions verifies the consistency of our results with bulk analytical techniques. We further demonstrate that, by changing laser and photoionization energies, variations in molecular stability of organic compounds associated with mineral surfaces can be determined. The combination of synchrotron-LDPI and SIMS shows that the energetic conditions involved in desorption and ionization of organic matter may be a greater determinant of mass spectral signatures than the inherent molecular structure of the organic compounds investigated. The latter has implications for molecular models of natural organic matter that are based on mass spectrometric information.


Subject(s)
Mass Spectrometry/methods , Minerals/analysis , Organic Chemicals/analysis , Soil/chemistry , Synchrotrons , Minerals/chemistry , Molecular Structure , Organic Chemicals/chemistry
20.
Environ Sci Technol ; 47(12): 6214-22, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23550952

ABSTRACT

This study focuses on the effects of fulvic acid (FA) on uranium(VI) sorption kinetics to a silica sand. Using a tritium-labeled FA in batch experiments made it possible to investigate sorption rates over a wide range of environmentally relevant FA concentrations (0.37-23 mg L(-1) TOC). Equilibrium speciation calculations were coupled with an evaluation of U(VI) and FA sorption rates based on characteristic times. This allowed us to suggest plausible sorption mechanisms as a function of solution conditions (e.g., pH, U(VI)/FA/surface site ratios). Our results indicate that U(VI) sorption onto silica sand can be either slower or faster in the presence of FA compared to a ligand-free system. This suggests a shift in the underlying mechanisms of FA effects on U(VI) sorption, from competitive sorption to influences of U(VI)-FA complexes, in the same system. Changes in metal sorption rates depend on the relative concentrations of metals, organic ligands, and mineral surface sites. Hence, these results elucidate the sometimes conflicting information in the literature about the influence of organic matter on metal sorption rates. Furthermore, they provide guidance for the selection of appropriate sorption equilibration times for experiments that are designed to determine metal distribution coefficients (Kd values) under equilibrium conditions.


Subject(s)
Benzopyrans/chemistry , Uranium/chemistry , Adsorption , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL