Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 165(4): 773-5, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27153489

ABSTRACT

Homeostatic control of brain metabolism is essential for neuronal activity. Jais et al., (2016) report that reduced brain glucose uptake elicited by a high-fat diet self-corrects by the recruitment of peripheral, VEGF-producing macrophages to the blood-brain barrier. Their findings further suggest that restoring brain glucose availability might help protect from cognitive impairment in Alzheimer's disease.


Subject(s)
Brain/metabolism , Glucose/metabolism , Alzheimer Disease/metabolism , Diet, High-Fat , Humans , Obesity/metabolism
2.
EMBO J ; 41(23): e110595, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36305367

ABSTRACT

Mammalian SWI/SNF/BAF chromatin remodeling complexes influence cell lineage determination. While the contribution of these complexes to neural progenitor cell (NPC) proliferation and differentiation has been reported, little is known about the transcriptional profiles that determine neurogenesis or gliogenesis. Here, we report that BCL7A is a modulator of the SWI/SNF/BAF complex that stimulates the genome-wide occupancy of the ATPase subunit BRG1. We demonstrate that BCL7A is dispensable for SWI/SNF/BAF complex integrity, whereas it is essential to regulate Notch/Wnt pathway signaling and mitochondrial bioenergetics in differentiating NPCs. Pharmacological stimulation of Wnt signaling restores mitochondrial respiration and attenuates the defective neurogenic patterns observed in NPCs lacking BCL7A. Consistently, treatment with an enhancer of mitochondrial biogenesis, pioglitazone, partially restores mitochondrial respiration and stimulates neuronal differentiation of BCL7A-deficient NPCs. Using conditional BCL7A knockout mice, we reveal that BCL7A expression in NPCs and postmitotic neurons is required for neuronal plasticity and supports behavioral and cognitive performance. Together, our findings define the specific contribution of BCL7A-containing SWI/SNF/BAF complexes to mitochondria-driven NPC commitment, thereby providing a better understanding of the cell-intrinsic transcriptional processes that connect metabolism, neuronal morphogenesis, and cognitive flexibility.


Subject(s)
Cell Differentiation , Microfilament Proteins , Neural Stem Cells , Animals , Mice , Adenosine Triphosphatases/metabolism , Chromatin Assembly and Disassembly , Energy Metabolism , Mitochondria/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Microfilament Proteins/metabolism , Neural Stem Cells/cytology
3.
EMBO Rep ; 23(5): e52606, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35297148

ABSTRACT

Mitochondrial dysfunction can either extend or decrease Caenorhabditis elegans lifespan, depending on whether transcriptionally regulated responses can elicit durable stress adaptation to otherwise detrimental lesions. Here, we test the hypothesis that enhanced metabolic flexibility is sufficient to circumvent bioenergetic abnormalities associated with the phenotypic threshold effect, thereby transforming short-lived mitochondrial mutants into long-lived ones. We find that CEST-2.2, a carboxylesterase mainly localizes in the intestine, may stimulate the survival of mitochondrial deficient animals. We report that genetic manipulation of cest-2.2 expression has a minor lifespan impact on wild-type nematodes, whereas its overexpression markedly extends the lifespan of complex I-deficient gas-1(fc21) mutants. We profile the transcriptome and lipidome of cest-2.2 overexpressing animals and show that CEST-2.2 stimulates lipid metabolism and fatty acid beta-oxidation, thereby enhancing mitochondrial respiratory capacity through complex II and LET-721/ETFDH, despite the inherited genetic lesion of complex I. Together, our findings unveil a metabolic pathway that, through the tissue-specific mobilization of lipid deposits, may influence the longevity of mitochondrial mutant C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lipid Metabolism/genetics , Longevity/genetics , Mitochondria/metabolism
4.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38279266

ABSTRACT

The social burden of dementia is remarkable since it affects some 57.4 million people all over the world. Impairment of autophagy in age-related diseases, such as dementia, deserves deep investigation for the detection of novel disease-modifying approaches. Several drugs belonging to different classes were suggested to be effective in managing Alzheimer's disease (AD) by means of autophagy induction. Useful autophagy inducers in AD should be endowed with a direct, measurable effect on autophagy, have a safe tolerability profile, and have the capability to cross the blood-brain barrier, at least with poor penetration. According to the PRISMA 2020 recommendations, we propose here a systematic review to appraise the measurable effectiveness of autophagy inducers in the improvement of cognitive decline and neuropsychiatric symptoms in clinical trials and retrospective studies. The systematic search retrieved 3067 records, 10 of which met the eligibility criteria. The outcomes most influenced by the treatment were cognition and executive functioning, pointing at a role for metformin, resveratrol, masitinib and TPI-287, with an overall tolerable safety profile. Differences in sample power, intervention, patients enrolled, assessment, and measure of outcomes prevents generalization of results. Moreover, the domain of behavioral symptoms was found to be less investigated, thus prompting new prospective studies with homogeneous design. PROSPERO registration: CRD42023393456.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/drug therapy , Cognition , Cognitive Dysfunction/drug therapy , Prospective Studies , Retrospective Studies , Autophagy/drug effects , Neurodegenerative Diseases/drug therapy
5.
J Biol Chem ; 298(4): 101774, 2022 04.
Article in English | MEDLINE | ID: mdl-35218773

ABSTRACT

Microtubule-associated protein tau is a naturally unfolded protein that can modulate a vast array of physiological processes through direct or indirect binding with molecular partners. Aberrant tau homeostasis has been implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. In this study, we performed an unbiased high-content protein profiling assay by incubating recombinant human tau on microarrays containing thousands of human polypeptides. Among the putative tau-binding partners, we identify SAH hydrolase-like protein 1/inositol 1,4,5-trisphosphate receptor (IP3R)-binding protein (AHCYL1/IRBIT), a member of the SAH hydrolase family and a previously described modulator of IP3R activity. Using coimmunoprecipitation assays, we show that endogenous as well as overexpressed tau can physically interact with AHCYL1/IRBIT in brain tissues and cultured cells. Proximity ligation assay experiments demonstrate that tau overexpression may modify the close localization of AHCYL1/IRBIT to IP3R at the endoplasmic reticulum. Together, our experimental evidence indicates that tau interacts with AHCYL1/IRBIT and potentially modulates AHCYL1/IRBIT function.


Subject(s)
Lectins, C-Type , Membrane Proteins , Proteomics , tau Proteins , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Gene Expression , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Binding , tau Proteins/genetics , tau Proteins/metabolism
6.
EMBO J ; 38(6)2019 03 15.
Article in English | MEDLINE | ID: mdl-30796049

ABSTRACT

Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF-1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi-omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP-saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA-approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short-lived mitochondrial mutant animals.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Longevity , Mitochondria/drug effects , Mitochondrial Diseases/prevention & control , Xanthine/administration & dosage , Xanthine/metabolism , Adenosine Triphosphate/metabolism , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Insulin/chemistry , Insulin-Like Growth Factor I/antagonists & inhibitors , Metabolome , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Proteome , Transcriptome
7.
PLoS Biol ; 16(6): e2004893, 2018 06.
Article in English | MEDLINE | ID: mdl-29920513

ABSTRACT

Mutations in peroxin (PEX) genes lead to loss of peroxisomes, resulting in the formation of peroxisomal biogenesis disorders (PBDs) and early lethality. Studying PBDs and their animal models has greatly contributed to our current knowledge about peroxisomal functions. Very-long-chain fatty acid (VLCFA) accumulation has long been suggested as a major disease-mediating factor, although the exact pathological consequences are unclear. Here, we show that a Drosophila Pex19 mutant is lethal due to a deficit in medium-chain fatty acids (MCFAs). Increased lipolysis mediated by Lipase 3 (Lip3) leads to accumulation of free fatty acids and lipotoxicity. Administration of MCFAs prevents lipolysis and decreases the free fatty acid load. This drastically increases the survival rate of Pex19 mutants without reducing VLCFA accumulation. We identified a mediator of MCFA-induced lipolysis repression, the ceramide synthase Schlank, which reacts to MCFA supplementation by increasing its repressive action on lip3. This shifts our understanding of the key defects in peroxisome-deficient cells away from elevated VLCFA levels toward elevated lipolysis and shows that loss of this important organelle can be compensated by a dietary adjustment.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Fatty Acids/metabolism , Mitochondria/pathology , Peroxins/metabolism , Peroxisomal Disorders/genetics , Peroxisomes/metabolism , Sphingosine N-Acyltransferase/metabolism , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Endoplasmic Reticulum/metabolism , Lipase/metabolism , Lipolysis/physiology , Mitochondria/genetics , Nuclear Envelope/metabolism , Peroxins/genetics , Peroxisomal Disorders/mortality
8.
Phytother Res ; 35(10): 5333-5338, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34435395

ABSTRACT

Pain is underdiagnosed and often not adequately treated, contributing to behavioral and psychological symptoms of dementia (BPSD). BPSD are treated with atypical antipsychotics that are associated with severe cerebrocardiovascular effects. Interestingly, treatment of pain may reduce agitation. Research is focusing on nonpharmacological treatment, such as aromatherapy, for pain and BPSD in dementia. This clinical study will assess the effect on agitation in severely demented elderly of BEO loaded in a nanotechnological odorless cream indistinguishable from placebo. This is a protocol for a randomized, double-blind, placebo-controlled trial (NCT04321889). A total of 134 patients aged ≥65 years with severe dementia (mini-mental state examination <12) will be recruited and randomly allocated 1:1 to either BEO or placebo group. After baseline screening, BEO (80 mg) cream or placebo cream will be trans-dermally applied on both arms twice a day for 4 weeks with a 4-week follow-up period. The effect on agitation will be the primary endpoint. Any adverse events will be reported. A double-blind, clinical trial evaluating efficacy and safety of an essential oil endowed with strong analgesic properties has never been carried out before. This study could form the basis for a safer and more effective treatment of BPSD in severe dementia.


Subject(s)
Aromatherapy , Dementia , Furocoumarins , Oils, Volatile , Aged , Dementia/drug therapy , Double-Blind Method , Humans , Nanotechnology , Oils, Volatile/therapeutic use , Randomized Controlled Trials as Topic , Treatment Outcome
9.
J Headache Pain ; 22(1): 87, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34330208

ABSTRACT

BACKGROUND: the interest of clinical reaseach in polymorphisms and epigenetics in migraine has been growing over the years. Due to the new era of preventative migraine treatment opened by monoclonal antibodies (mAbs) targeting the signaling of the calcitonin-gene related peptide (CGRP), the present systematic review aims at identifying genetic variants occurring along the CGRP pathway and at verifying whether these can affect the clinical features and the course of disease and the responsiveness of patients to therapy. METHODS: the literature search has been conducted consulting the most relevant scientific databases, i.e. PubMed/MEDLINE, Scopus, Web of Science, the Human Genome Epidemiology (HuGE) Published Literature database (Public Health Genomics Knowledge Base) and Clinicaltrials.gov from database inception until April 1, 2021. The process of identification and selection of the studies included in the analysis has followed the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) criteria for systematic reviews and meta-analyses and the guidance from the Human Genome Epidemiology Network for reporting gene-disease associations. RESULTS: the search has retrieved 800 results, among which only 7 studies have met the eligibility criteria for inclusion in the analysis. The latter are case-control studies of genetic association and an exploratory analysis and two polymorphisms have been detected as the most recurring: the rs3781719 (T > C) of the CALC A gene encoding CGRP and the rs7590387 of the gene encoding the receptor activity-modifying protein (RAMP) 1 (C > G). Only one study assessing the methylation pattern with regard to CGRP pathway has been found from the search. No genetic association studies investigating the possible effect of genetic variants affecting CGRP signaling on the responsiveness to the most recent pharmacological approaches, i.e. anti-CGRP(R) mAbs, gepants and ditans, have been published. According to the Human Genome Epidemiology (HuGE) systematic reviews and meta-analyses risk-of-bias score for genetic association studies, the heterogeneity between and across studies and the small sample size do not allow to draw conclusions and prompt future studies. CONCLUSIONS: adequately powered, good quality genetic association studies are needed to understand the impact of genetic variants affecting the pathway of CGRP on migraine susceptibility and clinical manifestation and to predict the response to therapy in terms of efficacy and safety.


Subject(s)
Calcitonin Gene-Related Peptide , Migraine Disorders , Antibodies, Monoclonal , Calcitonin , Calcitonin Gene-Related Peptide Receptor Antagonists , Humans , Migraine Disorders/genetics
10.
Proc Natl Acad Sci U S A ; 112(4): 1059-64, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25583481

ABSTRACT

Alterations of mitochondrial metabolism and genomic instability have been implicated in tumorigenesis in multiple tissues. High-grade glioma (HGG), one of the most lethal human neoplasms, displays genetic modifications of Krebs cycle components as well as electron transport chain (ETC) alterations. Furthermore, the p53 tumor suppressor, which has emerged as a key regulator of mitochondrial respiration at the expense of glycolysis, is genetically inactivated in a large proportion of HGG cases. Therefore, it is becoming evident that genetic modifications can affect cell metabolism in HGG; however, it is currently unclear whether mitochondrial metabolism alterations could vice versa promote genomic instability as a mechanism for neoplastic transformation. Here, we show that, in neural progenitor/stem cells (NPCs), which can act as HGG cell of origin, inhibition of mitochondrial metabolism leads to p53 genetic inactivation. Impairment of respiration via inhibition of complex I or decreased mitochondrial DNA copy number leads to p53 genetic loss and a glycolytic switch. p53 genetic inactivation in ETC-impaired neural stem cells is caused by increased reactive oxygen species and associated oxidative DNA damage. ETC-impaired cells display a marked growth advantage in the presence or absence of oncogenic RAS, and form undifferentiated tumors when transplanted into the mouse brain. Finally, p53 mutations correlated with alterations in ETC subunit composition and activity in primary glioma-initiating neural stem cells. Together, these findings provide previously unidentified insights into the relationship between mitochondria, genomic stability, and tumor suppressive control, with implications for our understanding of brain cancer pathogenesis.


Subject(s)
Brain Neoplasms , Cell Transformation, Neoplastic , Glioma , Neural Stem Cells/metabolism , Tumor Suppressor Protein p53 , Animals , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Citric Acid Cycle/genetics , DNA Damage , Electron Transport Chain Complex Proteins/genetics , Electron Transport Chain Complex Proteins/metabolism , Glioma/genetics , Glioma/metabolism , Glioma/pathology , Glycolysis/genetics , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Neural Stem Cells/pathology , Oxidation-Reduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
EMBO J ; 30(1): 194-204, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-21113126

ABSTRACT

Nicotine, the major psychoactive component of cigarette smoke, modulates neuronal activity to produce Ca2+-dependent changes in gene transcription. However, the downstream targets that underlie the long-term effects of nicotine on neuronal function, and hence behaviour, remain to be elucidated. Here, we demonstrate that nicotine administration to mice upregulates levels of the type 2 ryanodine receptor (RyR2), a Ca2+-release channel present on the endoplasmic reticulum, in a number of brain areas associated with cognition and addiction, notably the cortex and ventral midbrain. Nicotine-mediated RyR2 upregulation was driven by CREB, and caused a long-lasting reinforcement of Ca2+ signalling via the process of Ca2+-induced Ca2+ release. RyR2 upregulation was itself required for long-term phosphorylation of CREB in a positive-feedback signalling loop. We further demonstrate that inhibition of RyR-activation in vivo abolishes sensitization to nicotine-induced habituated locomotion, a well-characterised model for onset of drug dependence. Our findings, therefore, indicate that gene-dependent reprogramming of Ca2+ signalling is involved in nicotine-induced behavioural changes.


Subject(s)
Ganglionic Stimulants/pharmacology , Neuronal Plasticity/drug effects , Nicotine/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Up-Regulation/drug effects , Animals , Calcium/metabolism , Calcium Signaling/drug effects , Cells, Cultured , Cerebellar Cortex/cytology , Cerebellar Cortex/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Ganglionic Stimulants/administration & dosage , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Nerve Net/drug effects , Nerve Net/metabolism , Neurons/drug effects , Neurons/metabolism , Nicotine/administration & dosage , Rats , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/metabolism
12.
Proc Natl Acad Sci U S A ; 108(52): 21093-8, 2011 Dec 27.
Article in English | MEDLINE | ID: mdl-22160687

ABSTRACT

The p53-family member TAp73 is a transcription factor that plays a key role in many biological processes. Here, we show that p73 drives the expression of microRNA (miR)-34a, but not miR-34b and -c, by acting on specific binding sites on the miR-34a promoter. Expression of miR-34a is modulated in parallel with that of TAp73 during in vitro differentiation of neuroblastoma cells and cortical neurons. Retinoid-driven neuroblastoma differentiation is inhibited by knockdown of either p73 or miR-34a. Transcript expression of miR-34a is significantly reduced in vivo both in the cortex and hippocampus of p73(-/-) mice; miR-34a and TAp73 expression also increase during postnatal development of the brain and cerebellum when synaptogenesis occurs. Accordingly, overexpression or silencing of miR-34a inversely modulates expression of synaptic targets, including synaptotagmin-1 and syntaxin-1A. Notably, the axis TAp73/miR-34a/synaptotagmin-1 is conserved in brains from Alzheimer's patients. These data reinforce a role for TAp73 in neuronal development.


Subject(s)
Cell Differentiation/physiology , Cerebral Cortex/physiology , Gene Expression Regulation/physiology , MicroRNAs/metabolism , Neurons/cytology , Nuclear Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Blotting, Western , Cerebral Cortex/metabolism , Chromatin Immunoprecipitation , Computational Biology , Gene Expression Regulation/genetics , Hippocampus/metabolism , Humans , Laser Capture Microdissection , Mice , Mice, Knockout , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Real-Time Polymerase Chain Reaction , Synaptotagmin I/metabolism
13.
Front Pharmacol ; 15: 1417851, 2024.
Article in English | MEDLINE | ID: mdl-39148533

ABSTRACT

Background: An estimated 57.4 million people live with dementia worldwide, with the social burden of the disease steadily growing. Despite the approval of lecanemab and ongoing trials, there is still a lack of effective and safe treatments for behavioral and psychological symptoms of dementia (BPSD), which affect 99% of patients. Agitation is one of the most disabling BPSD, with a cross-sectional prevalence of ≥50% in nursing homes, and refers to help-seeking behavior in response to various sources of discomfort, among which pain is a crucial component. Methods: This pilot phase of the BRAINAID (NCT04321889) trial aimed to assess the effectiveness of the patented nanotechnological device NanoBEO in older (≥65 years) people with severe dementia. This randomized placebo-controlled trial, with quadruple masking that involved all operators and participants, followed the SPIRIT and CONSORT statements. A total of 29 patients completed the trial. The patients were randomly allocated in a 1:1 ratio to the NanoBEO or placebo group, and the corresponding product was applied on both arms once daily for 4 weeks, with a 4-week follow-up period. The primary endpoint was efficacy against agitation. The secondary endpoints were efficacy against agitation at follow-up and efficacy against pain. Any adverse events were reported, and biochemical analyses were performed. Results: The NanoBEO intervention reduced the frequency (28%) and level of disruptiveness of agitated behaviors. The effect on frequency was statistically significant after 2 weeks of treatment. The efficacy of NanoBEO on agitated behaviors lasted for the entire 4-week treatment period. No additional psychotropic drugs were prescribed throughout the study duration. The results after 1 week of treatment demonstrated that NanoBEO had statistically significant analgesic efficacy (45.46% improvement in pain intensity). The treatment was well tolerated. Discussion: This trial investigated the efficacy of NanoBEO therapy in managing agitation and pain in dementia. No need for rescue medications was recorded, strengthening the efficacy of NanoBEO in prolonged therapy for advanced-stage dementia and the usefulness of the intervention in the deprescription of potentially harmful drugs. This study provided a robust rationale for the application of NanoBEO in a subsequent large-scale pivotal trial to allow clinical translation of the product. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT04321889.

14.
Cell Death Dis ; 15(4): 304, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693139

ABSTRACT

Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.


Subject(s)
Caenorhabditis elegans , Wiskott-Aldrich Syndrome Protein, Neuronal , alpha-Synuclein , alpha-Synuclein/metabolism , Animals , Humans , Caenorhabditis elegans/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Actins/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , Synapsins/metabolism , Caenorhabditis elegans Proteins/metabolism
15.
Biol Direct ; 18(1): 66, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833756

ABSTRACT

The social impact of glaucoma is worth of note: primary open-angle glaucoma (POAG) is one of the leading causes of irreversible blindness worldwide, affecting some 68.56 million people with overall prevalence of 2.4%. Since one of the main risk factors for the development of POAG is the increase of intraocular pressure (IOP) causing retinal ganglion cells death, the medical treatment of POAG consists in the use of drugs endowed with neuroprotective effect and able to reduce IOP. These drugs include beta-blockers, prostaglandin analogues, carbonic anhydrase inhibitors, alpha or cholinergic agonists and rho kinase inhibitors. However, not all the patients respond to the same extent to the therapy in terms of efficacy and safety. Genetics and genome wide association studies have highlighted the occurrence of mutations and polymorphisms influencing the predisposition to develop POAG and its phenotype, as well as affecting the response to pharmacological treatment. The present systematic review and meta-analysis aims at identifying genetic variants and at verifying whether these can influence the responsiveness of patients to therapy for efficacy and safety. It follows the most updated Preferred Reporting Items for Systematic reviews and Meta-Analyses 2020 recommendations. The literature search was conducted consulting the most relevant scientific databases, i.e. PubMed/MEDLINE, Scopus, Web of Science and Public Health Genomics and Precision Health Knowledge Base up to June 14th, 2023. The search retrieved 1026 total records, among which eight met the eligibility criteria for inclusion in the analysis. The results demonstrated that the most investigated pharmacogenetic associations concern latanoprost and timolol, and that efficacy was studied more in depth than safety. Moreover, the heterogeneity of design and paucity of studies prompt further investigation in randomized clinical trials. In fact, adequately powered and designed pharmacogenetic association studies are needed to provide body of evidence with good certainty for a more appropriate use of medical therapy in POAG.PROSPERO registration: CRD42023434867.


Subject(s)
Glaucoma, Open-Angle , Humans , Glaucoma, Open-Angle/drug therapy , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/chemically induced , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/adverse effects , Genome-Wide Association Study , Timolol/therapeutic use , Genotype
16.
Toxins (Basel) ; 15(5)2023 05 12.
Article in English | MEDLINE | ID: mdl-37235366

ABSTRACT

Some 14% of global prevalence, based on high-income country populations, suffers from migraine. Chronic migraine is very disabling, being characterized by at least 15 headache days per month of which at least 8 days present the features of migraine. Onabotulinumtoxin A, targeting the machinery for exocytosis of neurotransmitters and neuropeptides, has been approved for use in chronic migraine since 2010. This systematic review and meta-analysis appraises the safety of onabotulinumtoxin A treatment for chronic migraine and the occurrence of treatment-related adverse events (TRAEs) in randomized, clinical studies in comparison with placebo or other comparators and preventative treatments according to the most updated Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 recommendations. The search retrieved 888 total records. Nine studies are included and seven were eligible for meta-analysis. The present study demonstrates that toxin produces more TRAEs than placebo, but less than oral topiramate, supporting the safety of onabotulinumtoxin A, and highlights the heterogeneity of the studies present in the literature (I2 = 96%; p < 0.00001). This points to the need for further, adequately powered, randomized clinical trials assessing the safety of onabotulinumtoxin A in combination with the newest treatment options.


Subject(s)
Botulinum Toxins, Type A , Migraine Disorders , Humans , Botulinum Toxins, Type A/adverse effects , Randomized Controlled Trials as Topic , Migraine Disorders/drug therapy , Headache/drug therapy
17.
Hum Mol Genet ; 19(9): 1669-77, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20123860

ABSTRACT

Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.


Subject(s)
Mitochondrial Diseases/genetics , Neurons/cytology , Neurons/metabolism , Thymidine Kinase/deficiency , Analysis of Variance , Animals , Ataxia/enzymology , Ataxia/etiology , Base Sequence , Brain/metabolism , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Energy Metabolism , Genetic Vectors , Immunoblotting , Immunohistochemistry , Lentivirus , Mice , Mice, Knockout , Mitochondrial Diseases/complications , Molecular Sequence Data , Mutation/genetics , Thymidine Kinase/genetics
18.
Hum Mol Genet ; 19(2): 342-51, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-19892780

ABSTRACT

Mutations in the gene encoding FERM domain-containing 7 protein (FRMD7) are recognized as an important cause of X-linked idiopathic infantile nystagmus (IIN). However, the precise role of FRMD7 and its involvement in the pathogenesis of IIN are not understood. In the present study, we have explored the role of FRMD7 in neuronal development. Using in situ hybridization and immunohistochemistry, we reveal that FRMD7 expression is spatially and temporally regulated in both the human and mouse brain during embryonic and fetal development. Furthermore, we show that FRMD7 expression is up-regulated upon retinoic acid (RA)-induced differentiation of mouse neuroblastoma NEURO2A cells, suggesting FRMD7 may play a role in this process. Indeed, we demonstrate, for the first time, that knockdown of FRMD7 during neuronal differentiation results in altered neurite development. Taken together, our data suggest that FRMD7 is involved in multiple aspects of neuronal development, and have direct importance to further understanding the pathogenesis of IIN.


Subject(s)
Brain/growth & development , Cytoskeletal Proteins/genetics , Membrane Proteins/genetics , Neurons/cytology , Nystagmus, Congenital/metabolism , Animals , Brain/cytology , Brain/embryology , Brain/metabolism , Cell Differentiation , Cell Line, Tumor , Cells, Cultured , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Embryo, Mammalian , Gene Expression Regulation, Developmental , Humans , Membrane Proteins/metabolism , Mice , Neurons/metabolism , Nystagmus, Congenital/genetics
20.
Front Neurol ; 13: 813282, 2022.
Article in English | MEDLINE | ID: mdl-35250820

ABSTRACT

BACKGROUND: Stroke is one of the most frequent causes of death and disability worldwide. It is accompanied by the impaired motor function of the upper extremities in over 69% of patients up to hemiplegia in the following 5 years in 56% of cases. This condition often is characterized by chronic poststroke pain, difficult to manage, further worsening quality of life. Poststroke pain occurs within 3-6 months. Robot-assisted neurorehabilitation using the Automatic Recovery Arm Motility Integrated System (ARAMIS) has proven efficacy in motor function recovery exploiting the movements and the strength of the unaffected arm. The rationale of the ROBOCOP (ROBOtic Care of Poststroke pain) randomized trial is the assessment of the impact of robot-assisted functional and motor recovery on the prevention of poststroke pain. METHODS: A total of 118 patients with hemiplegic arms due to stroke will be enrolled and randomly allocated with a 1:1 ratio to ARAMIS or conventional neurorehabilitation group. After a baseline screening at hospital discharge, ARAMIS or conventional rehabilitation will be performed for 8 weeks. The primary endpoint is the prevention of the development of poststroke pain and the secondary endpoints are prevention of spasticity and efficacy in clinical motor rehabilitation. The primary outcome measures consist in the visual analog scale and the doleur neuropatique 4 and the secondary outcome measures include: the Modified Ashworth Scale, the Resistance to Passive movement Scale; the Upper Extremity Subscale of the Fugl-Meyer Motor Assessment; the Action Research Arm Test; the Barthel Index for activities of daily living; and the magnetic resonance imaging (MRI) recovery-related parameters. After baseline, both primary and secondary outcome measures will be performed in the following time points: 1 month after stroke (t 1, half of the rehabilitation); 2 months after stroke (t 2, after rehabilitation); and 3 months (t 3) and 6 months (t 4) after stroke, critical for poststroke pain development. DISCUSSION: This is the first clinical trial investigating the efficacy of robot-assisted neurorehabilitation using ARAMIS on poststroke pain prevention. This study could remarkably improve the quality of life of stroke survivors.

SELECTION OF CITATIONS
SEARCH DETAIL