Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Pathol ; 263(1): 74-88, 2024 05.
Article in English | MEDLINE | ID: mdl-38411274

ABSTRACT

Fascin actin-bundling protein 1 (Fascin) is highly expressed in a variety of cancers, including esophageal squamous cell carcinoma (ESCC), working as an important oncogenic protein and promoting the migration and invasion of cancer cells by bundling F-actin to facilitate the formation of filopodia and invadopodia. However, it is not clear how exactly the function of Fascin is regulated by acetylation in cancer cells. Here, in ESCC cells, the histone acetyltransferase KAT8 catalyzed Fascin lysine 41 (K41) acetylation, to inhibit Fascin-mediated F-actin bundling and the formation of filopodia and invadopodia. Furthermore, NAD-dependent protein deacetylase sirtuin (SIRT) 7-mediated deacetylation of Fascin-K41 enhances the formation of filopodia and invadopodia, which promotes the migration and invasion of ESCC cells. Clinically, the analysis of cancer and adjacent tissue samples from patients with ESCC showed that Fascin-K41 acetylation was lower in the cancer tissue of patients with lymph node metastasis than in that of patients without lymph node metastasis, and low levels of Fascin-K41 acetylation were associated with a poorer prognosis in patients with ESCC. Importantly, K41 acetylation significantly blocked NP-G2-044, one of the Fascin inhibitors currently being clinically evaluated, suggesting that NP-G2-044 may be more suitable for patients with low levels of Fascin-K41 acetylation, but not suitable for patients with high levels of Fascin-K41 acetylation. © 2024 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carrier Proteins , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Microfilament Proteins , Sirtuins , Humans , Acetylation , Actins/metabolism , Cell Line, Tumor , Esophageal Neoplasms/pathology , Histone Acetyltransferases/metabolism , Lymphatic Metastasis , Sirtuins/metabolism
2.
Cell Biochem Funct ; 36(8): 398-407, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30484863

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is a common malignancy without effective therapy. Histone deacetylase inhibitors (HDACIs) have been demonstrated as an emerging class of anticancer drugs for a range of haematological and solid tumours. However, the effect of HDACIs has not yet been investigated on ESCC cells. In this study, HDACIs were initially considered to have anticancer activity for ESCC, due to the high expression of HDAC genes in ESCC cell lines by analysing expression data of 27 ESCC cell lines from the Broad-Novartis Cancer Cell Line Encyclopedia. Next, we used five ESCC cell lines and one normal immortalized esophageal epithelial cell line to screen three HDACIs, panobinostat (LBH589), vorinostat (SAHA), and trichostatin A (TSA), for the ability to inhibit growth. Here, we report that LBH589 more effectively suppressed cell proliferation of ESCC cell lines, in a dose-dependent manner, than TSA and SAHA, as well as had lower toxicity against the SHEE normal immortalized esophageal epithelial cell line. Further experiments indicated that LBH589 treatment significantly inhibited TP53 (mutated TP53) expression, both at the mRNA and protein level, and simultaneously increased p21 and decreased cyclin D1 expression. Taken together, we propose that LBH589 inhibits ESCC cell proliferation mainly through inducing cell cycle arrest by increasing p21 and decreasing cyclin D1 in a p53-independent manner. SIGNIFICANCE OF THE STUDY: In this study, the antitumor activity of HDACIs LBH589, SAHA, and TSA on ESCC was characterized, with LBH589 displaying the most potent anti-proliferative activity while not harming normal immortalized esophageal epithelial cells. Furthermore, we propose that LBH589 exerts its anti-proliferative effect by inducing cell cycle arrest. The ability to specifically target cancer cells indicates therapeutic potential for use of LBH589 in the treatment of ESCC.


Subject(s)
Cell Cycle Checkpoints/drug effects , Histone Deacetylase Inhibitors/pharmacology , Panobinostat/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation/drug effects , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Humans , Hydroxamic Acids/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects
3.
Amino Acids ; 49(5): 943-955, 2017 05.
Article in English | MEDLINE | ID: mdl-28251354

ABSTRACT

Filopodia are dynamic membrane extensions generated by F-actin bundling and are involved in cancer cell migration, invasion and metastasis. Fascin is the crucial actin-bundling protein in filopodia, with phosphorylation at fascin serine 39 being well characterized to regulate fascin-mediated actin bundling in filopodia. However, increasing evidence indicates that fascin is phosphorylated at a number of sites. Whether phosphorylation at other sites also regulates fascin function is unknown. In this study, we show that four potential phosphorylation sites in fascin, specifically tyrosine 23, serine 38, serine 39 and serine 274, regulate cell behavior and filopodia formation in esophageal squamous cancer cells. Expression of non-phosphorylatable mutations at each of the four sites promoted anchorage-independent growth, cell motility and filopodia formation, whereas phosphomimetic mutations at each of these sites inhibited these cell behaviors, implying that fascin function in esophageal squamous cancer is regulated by fascin phosphorylation at multiple sites. Furthermore, phosphorylation at S38 and S39 cooperatively regulated cell behavior and filopodia formation, with dual dephosphorylation at both S38 and S39 residues maximally enhancing cell proliferation, migration and filopodia formation, and phosphorylation at any of the two phosphorylatable sites resulting in reduced enhancement. Taken together, our results reveal that phosphorylation at fascin amino acids Y23, S38, S39 and S274, in combination, downregulates the extent of anchorage-independent growth, cell migration and filopodia formation in esophageal squamous cancer cells.


Subject(s)
Carrier Proteins/metabolism , Epithelial Cells/metabolism , Microfilament Proteins/metabolism , Protein Processing, Post-Translational , Pseudopodia/metabolism , Serine/metabolism , Tyrosine/metabolism , Actins/genetics , Actins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Movement , Epithelial Cells/pathology , Esophagus/metabolism , Esophagus/pathology , Humans , Microfilament Proteins/genetics , Mutation , Phosphorylation , Pseudopodia/pathology , Pseudopodia/ultrastructure
4.
Cancer Commun (Lond) ; 41(12): 1398-1416, 2021 12.
Article in English | MEDLINE | ID: mdl-34555274

ABSTRACT

BACKGROUND: Fascin is crucial for cancer cell filopodium formation and tumor metastasis, and is functionally regulated by post-translational modifications. However, whether and how Fascin is regulated by acetylation remains unclear. This study explored the regulation of Fascin acetylation and its corresponding roles in filopodium formation and tumor metastasis. METHODS: Immunoprecipitation and glutathione-S-transferase pull-down assays were performed to examine the interaction between Fascin and acetyltransferase P300/CBP-associated factor (PCAF), and immunofluorescence was used to investigate their colocalization. An in vitro acetylation assay was performed to identify Fascin acetylation sites by using mass spectrometry. A specific antibody against acetylated Fascin was generated and used to detect the PCAF-mediated Fascin acetylation in esophageal squamous cell carcinoma (ESCC) cells using Western blotting by overexpressing and knocking down PCAF expression. An in vitro cell migration assay was performed, and a xenograft model was established to study in vivo tumor metastasis. Live-cell imaging and fluorescence recovery after photobleaching were used to evaluate the function and dynamics of acetylated Fascin in filopodium formation. The clinical significance of acetylated Fascin and PCAF in ESCC was evaluated using immunohistochemistry. RESULTS: Fascin directly interacted and colocalized with PCAF in the cytoplasm and was acetylated at lysine 471 (K471) by PCAF. Using the specific anti-AcK471-Fascin antibody, Fascin was found to be acetylated in ESCC cells, and the acetylation level was consequently increased after PCAF overexpression and decreased after PCAF knockdown. Functionally, Fascin-K471 acetylation markedly suppressed in vitro ESCC cell migration and in vivo tumor metastasis, whereas Fascin-K471 deacetylation exhibited a potent oncogenic function. Moreover, Fascin-K471 acetylation reduced filopodial length and density, and lifespan of ESCC cells, while its deacetylation produced the opposite effect. In the filipodium shaft, K471-acetylated Fascin displayed rapid dynamic exchange, suggesting that it remained in its monomeric form owing to its weakened actin-bundling activity. Clinically, high levels of AcK471-Fascin in ESCC tissues were strongly associated with prolonged overall survival and disease-free survival of ESCC patients. CONCLUSIONS: Fascin interacts directly with PCAF and is acetylated at lysine 471 in ESCC cells. Fascin-K471 acetylation suppressed ESCC cell migration and tumor metastasis by reducing filopodium formation through the impairment of its actin-bundling activity.


Subject(s)
Carrier Proteins/metabolism , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Microfilament Proteins/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Actins , Humans , Lysine/metabolism , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL