Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Haematologica ; 106(11): 2874-2884, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33054112

ABSTRACT

Intraluminal thrombus formation precipitates conditions such as acute myocardial infarction and disturbs local blood flow resulting in areas of rapidly changing blood flow velocities and steep gradients of blood shear rate. Shear rate gradients are known to be pro-thrombotic with an important role for the shear-sensitive plasma protein von Willebrand factor (VWF). Here, we developed a single-chain antibody (scFv) that targets a shear gradient specific conformation of VWF to specifically inhibit platelet adhesion at sites of SRGs but not in areas of constant shear. Microfluidic flow channels with stenotic segments were used to create shear rate gradients during blood perfusion. VWF-GPIbα interactions were increased at sites of shear rate gradients compared to constant shear rate of matched magnitude. The scFv-A1 specifically reduced VWF-GPIbα binding and thrombus formation at sites of SRGs but did not block platelet deposition and aggregation under constant shear rate in upstream sections of the channels. Significantly, the scFv A1 attenuated platelet aggregation only in the later stages of thrombus formation. In the absence of shear, direct binding of scFv-A1 to VWF could not be detected and scFV-A1 did not inhibit ristocetin induced platelet agglutination. We have exploited the pro-aggregatory effects of SRGs on VWF dependent platelet aggregation and developed the shear-gradient sensitive scFv-A1 antibody that inhibits platelet aggregation exclusively at sites of shear rate gradients. The lack of VWF inhibition in non-stenosed vessel segments places scFV-A1 in an entirely new class of anti-platelet therapy for selective blockade of pathological thrombus formation while maintaining normal haemostasis.


Subject(s)
Thrombosis , von Willebrand Factor , Blood Platelets , Humans , Platelet Adhesiveness , Platelet Aggregation , Platelet Glycoprotein GPIb-IX Complex , Thrombosis/drug therapy
2.
J Neurosci ; 39(28): 5562-5580, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31061088

ABSTRACT

We previously identified that ngr1 allele deletion limits the severity of experimental autoimmune encephalomyelitis (EAE) by preserving axonal integrity. However, whether this favorable outcome observed in EAE is a consequence of an abrogated neuronal-specific pathophysiological mechanism, is yet to be defined. Here we show that, Cre-loxP-mediated neuron-specific deletion of ngr1 preserved axonal integrity, whereas its re-expression in ngr1-/- female mice potentiated EAE-axonopathy. As a corollary, myelin integrity was preserved under Cre deletion in ngr1flx/flx , retinal ganglion cell axons whereas, significant demyelination occurred in the ngr1-/- optic nerves following the re-introduction of NgR1. Moreover, Cre-loxP-mediated axon-specific deletion of ngr1 in ngr1flx/flx mice also demonstrated efficient anterograde transport of fluorescently-labeled ChTxß in the optic nerves of EAE-induced mice. However, the anterograde transport of ChTxß displayed accumulation in optic nerve degenerative axons of EAE-induced ngr1-/- mice, when NgR1 was reintroduced but was shown to be transported efficiently in the contralateral non- recombinant adeno-associated virus serotype 2-transduced optic nerves of these mutant mice. We further identified that the interaction between the axonal motor protein, Kinesin-1 and collapsin response mediator protein 2 (CRMP2) was unchanged upon Cre deletion of ngr1 Whereas, this Kinesin-1/CRMP2 association was reduced when NgR1 was re-expressed in the ngr1-/- optic nerves. Our data suggest that NgR1 governs axonal degeneration in the context of inflammatory-mediated demyelination through the phosphorylation of CRMP2 by stalling axonal vesicular transport. Moreover, axon-specific deletion of ngr1 preserves axonal transport mechanisms, blunting the induction of inflammatory demyelination and limiting the severity of EAE.SIGNIFICANCE STATEMENT Multiple sclerosis (MS) is commonly induced by aberrant immune-mediated destruction of the protective sheath of nerve fibers (known as myelin). However, it has been shown that MS lesions do not only consist of this disease pattern, exhibiting heterogeneity with continual destruction of axons. Here we investigate how neuronal NgR1 can drive inflammatory-mediated axonal degeneration and demyelination within the optic nerve by analyzing its downstream signaling events that govern axonal vesicular transport. We identify that abrogating the NgR1/pCRMP2 signaling cascade can maintain Kinesin-1-dependent anterograde axonal transport to limit inflammatory-mediated axonopathy and demyelination. The ability to differentiate between primary and secondary mechanisms of axonal degeneration may uncover therapeutic strategies to limit axonal damage and progressive MS.


Subject(s)
Axonal Transport , Encephalomyelitis, Autoimmune, Experimental/metabolism , Myelin Sheath/metabolism , Nogo Receptor 1/metabolism , Adult , Aged , Aged, 80 and over , Animals , Axons/metabolism , Cells, Cultured , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Kinesins/metabolism , Male , Mice , Mice, Inbred C57BL , Middle Aged , Nerve Tissue Proteins/metabolism , Nogo Receptor 1/genetics , Retinal Ganglion Cells/metabolism , Signal Transduction
3.
Semin Thromb Hemost ; 46(5): 592-605, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31858516

ABSTRACT

Stroke is a leading cause of death and disability worldwide. The classification of stroke subtypes is difficult but critical for the prediction of clinical course and patient management, and limited treatment options are available. There is an urgent need for improvements in both diagnosis and therapy. Strokes have rapidly evolving phases of damage involving unique compartments of the brain, which imposes severe limitations for current diagnostic and treatment procedures. The rapid development of nanotechnology in other areas of modern medicine has ignited a widespread interest in its potential for the field of stroke. An important feature of nanoparticles is the relative ease in which their structures and surface chemistries can be modified for specific and potentially multiple, simultaneous purposes. Nanoparticles can be synthesized to carry and deliver therapeutics to specific cellular or subcellular compartments; they can be engineered to provide enhanced contrast for imaging based on the detection of changes in the blood flow; or possess ligand-specific chemistries which can facilitate diagnosis and monitor the treatment response. More specifically for a stroke, nanoparticles can be engineered to release their payload in response to the distinct extracellular processes occurring around the clot and in the ischemic penumbra, as well as aid in the detection of pathological hallmarks present at various stages of stroke progression. These capacities allow targeted release of disease-modifying agents in the affected brain tissue, increasing treatment efficacy, and limiting unwanted side effects. While nanospheres, liposomes, and mesoporous nanostructures all emerge as future prospects for stroke treatment and diagnosis, much of this potential is yet to be clinically realized. This review outlines aspects of nanotechnology identified as having potential to revolutionize the field of stroke.


Subject(s)
Nanotechnology/methods , Stroke/diagnosis , Stroke/therapy , Humans
4.
Blood ; 119(20): 4752-61, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22262761

ABSTRACT

Tissue-type plasminogen activator (t-PA) can modulate permeability of the neurovascular unit and exacerbate injury in ischemic stroke. We examined the effects of t-PA using in vitro models of the blood-brain barrier. t-PA caused a concentration-dependent increase in permeability. This effect was dependent on plasmin formation and potentiated in the presence of plasminogen. An inactive t-PA variant inhibited the t-PA-mediated increase in permeability, whereas blockade of low-density lipoprotein receptors or exposed lysine residues resulted in similar inhibition, implying a role for both a t-PA receptor, most likely a low-density lipoprotein receptor, and a plasminogen receptor. This effect was selective to t-PA and its close derivative tenecteplase. The truncated t-PA variant reteplase had a minor effect on permeability, whereas urokinase and desmoteplase were ineffective. t-PA also induced marked shape changes in both brain endothelial cells and astrocytes. Changes in astrocyte morphology coincided with increased F-actin staining intensity, larger focal adhesion size, and elevated levels of phosphorylated myosin. Inhibition of Rho kinase blocked these changes and reduced t-PA/plasminogen-mediated increase in permeability. Hence plasmin, generated on the cell surface selectively by t-PA, modulates the astrocytic cytoskeleton, leading to an increase in blood-brain barrier permeability. Blockade of the Rho/Rho kinase pathway may have beneficial consequences during thrombolytic therapy.


Subject(s)
Astrocytes/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Fibrinolysin/pharmacology , Tissue Plasminogen Activator/pharmacology , rho-Associated Kinases/metabolism , Animals , Astrocytes/metabolism , Astrocytes/physiology , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiology , Cell Membrane Permeability/drug effects , Cells, Cultured , Coculture Techniques , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Activation/drug effects , Fibrinolysin/metabolism , Humans , Mice , Mice, Inbred C57BL , Models, Theoretical , Signal Transduction/drug effects , Signal Transduction/physiology
5.
Radiol Cardiothorac Imaging ; 6(2): e230098, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512024

ABSTRACT

Purpose To develop an approach for in vivo detection of interstitial cardiac fibrosis using PET with a peptide tracer targeting proteolyzed collagen IV (T-peptide). Materials and Methods T-peptide was conjugated to the copper chelator MeCOSar (chemical name, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid) and radiolabeled with copper 64 (64Cu). PET/CT scans were acquired following intravenous delivery of 64Cu-T-peptide-MeCOSar (0.25 mg/kg; 18 MBq ± 2.7 [SD]) to male transgenic mice overexpressing ß2-adrenergic receptors with intermediate (7 months of age; n = 4 per group) to severe (10 months of age; n = 11 per group) cardiac fibrosis and their wild-type controls. PET scans were also performed following coadministration of the radiolabeled probe with nonlabeled T-peptide in excess to confirm binding specificity. PET data were analyzed by t tests for static scans and analysis of variance tests (one- or two-way) for dynamic scans. Results PET/CT scans revealed significantly elevated (2.24-4.26-fold; P < .05) 64Cu-T-peptide-MeCOSar binding in the fibrotic hearts of aged transgenic ß2-adrenergic receptor mice across the entire 45-minute acquisition period compared with healthy controls. The cardiac tracer accumulation and presence of diffuse cardiac fibrosis in older animals were confirmed by gamma counting (P < .05) and histologic evaluation, respectively. Coadministration of a nonradiolabeled probe in excess abolished the elevated radiotracer binding in the aged transgenic hearts. Importantly, PET tracer accumulation was also detected in younger (7 months of age) transgenic mice with intermediate cardiac fibrosis, although this was only apparent from 20 minutes following injection (1.6-2.2-fold binding increase; P < .05). Conclusion The T-peptide PET tracer targeting proteolyzed collagen IV provided a sensitive and specific approach of detecting diffuse cardiac fibrosis at varying degrees of severity in a transgenic mouse model. Keywords: Diffuse Cardiac Fibrosis, Molecular Peptide Probe, Molecular Imaging, PET/CT © RSNA, 2024.


Subject(s)
Copper , Positron Emission Tomography Computed Tomography , Male , Animals , Mice , Molecular Probes , Positron-Emission Tomography , Molecular Imaging , Mice, Transgenic , Collagen Type IV , Fibrosis , Peptides
6.
Blood Adv ; 7(4): 561-574, 2023 02 28.
Article in English | MEDLINE | ID: mdl-35482909

ABSTRACT

Thrombolysis with tissue-type plasminogen activator (tPA) remains the main treatment for acute ischemic stroke. Nevertheless, tPA intervention is limited by a short therapeutic window, low recanalization rates, and a risk of intracranial hemorrhage (ICH), highlighting the clinical demand for improved thrombolytic drugs. We examined a novel thrombolytic agent termed "SCE5-scuPA," comprising a single-chain urokinase plasminogen activator (scuPA) fused with a single-chain antibody (SCE5) that targets the activated glycoprotein IIb/IIIa platelet receptor, for its effects in experimental stroke. SCE5-scuPA was first tested in a whole blood clot degradation assay to show the benefit of platelet-targeted thrombolysis. The tail bleeding time, blood clearance, and biodistribution were then determined to inform the use of SCE5-scuPA in mouse models of photothrombotic stroke and middle cerebral artery occlusion against tenecteplase. The impacts of SCE5-scuPA on motor function, ICH, blood-brain barrier (BBB) integrity, and immunosuppression were evaluated. Infarct size was measured by computed tomography imaging and magnetic resonance imaging. SCE5-scuPA enhanced clot degradation ex vivo compared with its nonplatelet-targeting control. The maximal SCE5-scuPA dose that maintained hemostasis and a rapid blood clearance was determined. SCE5-scuPA administration both before and 2 hours after photothrombotic stroke reduced the infarct volume. SCE5-scuPA also improved neurologic deficit, decreased intracerebral blood deposits, preserved the BBB, and alleviated immunosuppression poststroke. In middle cerebral artery occlusion, SCE5-scuPA did not worsen stroke outcomes or cause ICH, and it protected the BBB. Our findings support the ongoing development of platelet-targeted thrombolysis with SCE5-scuPA as a novel emergency treatment for acute ischemic stroke with a promising safety profile.


Subject(s)
Ischemic Stroke , Stroke , Thrombosis , Mice , Animals , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Tissue Distribution , Thrombolytic Therapy/adverse effects , Fibrinolytic Agents/therapeutic use , Stroke/etiology , Urokinase-Type Plasminogen Activator , Thrombosis/drug therapy , Platelet Glycoprotein GPIIb-IIIa Complex
7.
Adv Mater ; 35(21): e2210392, 2023 May.
Article in English | MEDLINE | ID: mdl-36908046

ABSTRACT

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Subject(s)
Diabetes Mellitus, Experimental , Mice , Animals , Diabetes Mellitus, Experimental/drug therapy , Glucose , Drug Delivery Systems , Drug Carriers/therapeutic use , Insulin
8.
Trends Cardiovasc Med ; 32(1): 20-31, 2022 01.
Article in English | MEDLINE | ID: mdl-33338638

ABSTRACT

Atrial fibrillation (AF) is a common arrhythmia that can lead to stroke. The diseased muscle tissue of the atria develops atrial fibrosis, inflammation, thrombosis and subsequent strokes, resulting in significant morbidity and mortality. Current diagnostic and evaluation paradigms for clinical AF focus on identifying functional and morphological abnormalities of the left atria by echocardiography. Notably, the development of atrial substrate that marks AF likely occurs for years before the manifestation of AF onset, meaning that the functional and morphometrical aberrations are end-stage features, representing a stable state of an already-compromised tissue. There is no existing 'gold standard' measure to identify the early atrial muscle disease and characterization of the atrial substrate is inadequate. In fact, sub-clinical identification of atrial myopathy is not undertaken in clinical practice because there is no robust screening method. Development of molecular imaging probes for detection of atrial muscle disease might enable early detection and staging of AF, ultimately leading to improved treatment outcome. In this review, we discuss possible molecular imaging targets that may enable early diagnosis of cardiovascular disease, with focus on novel insights, challenges and opportunities for sub-clinical imaging of atrial myopathy and AF.


Subject(s)
Atrial Fibrillation , Muscular Diseases , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/therapy , Disease Management , Early Diagnosis , Heart Atria/diagnostic imaging , Humans , Molecular Imaging
9.
Article in English | MEDLINE | ID: mdl-35873220

ABSTRACT

Background: The fibrinolytic system plays a critical role in maintaining hemostasis. Central to fibrinolysis is the degradation of fibrin by plasmin, produced in the circulation following the activation of plasminogen by plasminogen activators (PAs). Accurately measuring the plasminogen activation rate is vital for the understanding of fibrinolytic processes, particularly in the context of thrombolysis. Yet, due to the insoluble nature of fibrin, in vitro and ex vivo investigations of PA-mediated plasminogen activation have proven challenging. As researchers frequently adopt soluble fibrinogen fragments and/or alter the experimental system beyond what is physiologically relevant, they limit the validation and interpretation of their findings. Here, we present a novel, high-throughput assay for measuring plasminogen activation rates on natural, plasma-derived fibrin that optimally simulates in vivo conditions. Method: Human plasma was used as the source of plasmin(ogen) and fibrin(ogen). "Halo-shaped" plasma clots were produced in a 96-well plate using a thrombin-containing clotting mixture, ensuring that an optically compatible and plasma-free center is maintained in each well. Subsequent additions of a plasmin chromogenic substrate and different PAs were followed by absorbance measurements over time to extract the corresponding enzyme kinetics information. Results and Discussion: Validation experiments demonstrated the capability of our approach to accurately model fibrin-dependent and -independent plasminogen activation as well as sensitively detect variations in plasminogen and fibrinogen plasma levels. Conclusion: This assay allows a straightforward, yet powerful, measurement of plasminogen activation rates on established plasma clots, with the capability of properly assessing fibrin- and non-fibrin-dependent plasminogen activation by various therapeutic PAs.

10.
Sci Rep ; 12(1): 5702, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383230

ABSTRACT

The identification of the fibrotic arrhythmogenic substrate as a means of improving the diagnosis and prediction of atrial fibrillation has been a focus of research for many years. The relationship between the degree of atrial fibrosis as a major component of atrial cardiomyopathy and the recurrence of arrhythmia after AF ablation can correlate. While the focus in identification and characterisation of this substrate has been centred on the atrial wall and the evaluation of atrial scar and extracellular matrix (ECM) expansion by late gadolinium-enhancement (LGE) on cardiac magnetic resonance imaging (CMRI), LGE cannot visualise diffuse fibrosis and diffuse extravasation of gadolinium. The atrial pericardium is a fine avascular fibrous membranous sac that encloses the atrial wall, which can undergo remodelling leading to atrial disease and AF. Nevertheless, little attention has been given to the detection of its fibrocalcification, impact on arrhythmogenesis and, most importantly, on the potential prothrombotic role of epi-pericardial remodelling in generation of emboli. We have recently reported that tracers against collagen I and IV can provide a direct assessment of the ECM, and thus can estimate fibrotic burden with high sensitivity. Here, we show the ability of these optical tracers to identify epi-pericardial fibrosis, as well as to demonstrate subtle interstitial fibrosis of the atrial wall in a mouse model of beta-2-adrenergic receptor (ß2-AR) cardiac overexpression.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Animals , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/pathology , Catheter Ablation/methods , Collagen , Contrast Media , Fibrosis , Gadolinium , Heart Atria , Magnetic Resonance Imaging/methods , Mice , Pericardium/pathology
11.
Adv Healthc Mater ; 11(21): e2201151, 2022 11.
Article in English | MEDLINE | ID: mdl-36037807

ABSTRACT

The safe administration of thrombolytic agents is a challenge for the treatment of acute thrombosis. Lipid-based nanoparticle drug delivery technologies present opportunities to overcome the existing clinical limitations and deliver thrombolytic therapy with enhanced therapeutic outcomes and safety. Herein, lipid cubosomes are examined as nanocarriers for the encapsulation of thrombolytic drugs. The lipid cubosomes are loaded with the thrombolytic drug urokinase-type plasminogen activator (uPA) and coated with a low-fouling peptide that is incorporated within a metal-phenolic network (MPN). The peptide-containing MPN (pep-MPN) coating inhibits the direct contact of uPA with the surrounding environment, as assessed by an in vitro plasminogen activation assay and an ex vivo whole blood clot degradation assay. The pep-MPN-coated cubosomes prepared with 22 wt% peptide demonstrate a cell membrane-dependent thrombolytic activity, which is attributed to their fusogenic lipid behavior. Moreover, compared with the uncoated lipid cubosomes, the uPA-loaded pep-MPN-coated cubosomes demonstrate significantly reduced nonspecific cell association (<10% of the uncoated cubosomes) in the whole blood assay, a prolonged circulating half-life, and reduced splenic uPA accumulation in mice. These studies confirm the preserved bioactivity and cell membrane-dependent release of uPA within pep-MPN-coated lipid cubosomes, highlighting their potential as a delivery vehicle for thrombolytic drugs.


Subject(s)
Fibrinolytic Agents , Thrombosis , Mice , Animals , Drug Carriers , Polyphenols , Urokinase-Type Plasminogen Activator/pharmacology , Urokinase-Type Plasminogen Activator/therapeutic use , Lipids , Peptides/therapeutic use
12.
ACS Appl Mater Interfaces ; 14(3): 3740-3751, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35019268

ABSTRACT

Thrombolytic (clot-busting) therapies with plasminogen activators (PAs) are first-line treatments against acute thrombosis and ischemic stroke. However, limitations such as narrow therapeutic windows, low success rates, and bleeding complications hinder their clinical use. Drug-loaded polyphenol-based nanoparticles (NPs) could address these shortfalls by delivering a more targeted and safer thrombolysis, coupled with advantages such as improved biocompatibility and higher stability in vivo. Herein, a template-mediated polyphenol-based supramolecular assembly strategy is used to prepare nanocarriers of thrombolytic drugs. A thrombin-dependent drug release mechanism is integrated using tannic acid (TA) to cross-link urokinase-type PA (uPA) and a thrombin-cleavable peptide on a sacrificial mesoporous silica template via noncovalent interactions. Following drug loading and template removal, the resulting NPs retain active uPA and demonstrate enhanced plasminogen activation in the presence of thrombin (1.14-fold; p < 0.05). Additionally, they display lower association with macrophage (RAW 264.7) and monocytic (THP-1) cell lines (43 and 7% reduction, respectively), reduced hepatic accumulation, and delayed blood clearance in vivo (90% clearance at 60 min vs 5 min) compared with the template-containing NPs. Our thrombin-responsive, polyphenol-based NPs represent a promising platform for advanced drug delivery applications, with potential to improve thrombolytic therapies.


Subject(s)
Biocompatible Materials/chemistry , Fibrinolytic Agents/pharmacology , Polyphenols/chemistry , Thrombolytic Therapy , Thrombosis/drug therapy , Tissue Plasminogen Activator/pharmacology , Animals , Cell Line , Drug Carriers/chemistry , Drug Delivery Systems , Fibrinolytic Agents/chemistry , Humans , Materials Testing , Mice , Nanoparticles/chemistry , Temperature , Tissue Plasminogen Activator/chemistry
13.
Blood ; 114(9): 1937-46, 2009 Aug 27.
Article in English | MEDLINE | ID: mdl-19584397

ABSTRACT

Tissue-type plasminogen activator (tPA) is an extracellular protease that converts plasminogen into plasmin. For tPA to generate plasmin under biologic conditions, a cofactor must first bring tPA and plasminogen into physical proximity. Fibrin provides this cofactor for tPA-mediated plasmin generation in blood. Despite being naturally devoid of fibrin(ogen), tPA-mediated plasmin formation also occurs in the brain. The fibrin-like cofactor(s) that facilitates plasmin formation in the injured brain has remained unknown. Here we show that protein aggregates formed during neuronal injury provide a macromolecular, nonfibrin cofactor that promotes tPA-mediated plasmin formation and subsequent cell breakdown. The binding of plasminogen and tPA to these protein aggregates occurs via distinct mechanisms. Importantly, nonneuronal cell types also exhibit this cofactor effect upon injury, indicating a general phenomenon. This novel cofactor identified in nonviable cells has ramifications for ischemic stroke where tPA is used clinically and where plasmin activity within the injured brain is unwanted. A means of selectively inhibiting the binding of tPA to nonviable cells while preserving its association with fibrin may be of benefit for the treatment of ischemic stroke.


Subject(s)
Fibrin/chemistry , Fibrinolysin/chemistry , Tissue Plasminogen Activator/metabolism , Animals , Cell Line , Cells, Cultured , Fibrinolysin/metabolism , Ischemia/pathology , Macromolecular Substances , Male , Mice , Mice, Inbred C57BL , Models, Biological , Neurons/metabolism , Rats , Stroke/pathology
14.
J Am Heart Assoc ; 10(18): e022139, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34514814

ABSTRACT

Background Cardiac fibrosis is the excessive deposition of extracellular matrix in the heart, triggered by a cardiac insult, aging, genetics, or environmental factors. Molecular imaging of the cardiac extracellular matrix with targeted probes could improve diagnosis and treatment of heart disease. However, although this technology has been used to demonstrate focal scarring arising from myocardial infarction, its capacity to demonstrate extracellular matrix expansion and diffuse cardiac fibrosis has not been assessed. Methods and Results Here, we report the use of collagen-targeted peptides labeled with near-infrared fluorophores for the detection of diffuse cardiac fibrosis in the ß2-AR (ß-2-adrenergic receptor) overexpressing mouse model and in ischemic human hearts. Two approaches were evaluated, the first based on a T peptide that binds matrix metalloproteinase-2-proteolyzed collagen IV, and the second on the cyclic peptide EP-3533, which targets collagen I. The systemic and cardiac uptakes of both peptides (intravenously administered) were quantified ex vivo by near-infrared imaging of whole organs, tissue sections, and heart lysates. The peptide accumulation profiles corresponded to an immunohistochemically-validated increase in collagen types I and IV in hearts of transgenic mice versus littermate controls. The T peptide could encouragingly demonstrate both the intermediate (7 months old) and severe (11 months old) cardiomyopathic phenotypes. Co-immunostainings of fluorescent peptides and collagens, as well as reduced collagen binding of a control peptide, confirmed the collagen specificity of the tracers. Qualitative analysis of heart samples from patients with ischemic cardiomyopathy compared with nondiseased donors supported the collagen-enhancement capabilities of these peptides also in the clinical settings. Conclusions Together, these observations demonstrate the feasibility and translation potential of molecular imaging with collagen-binding peptides for noninvasive imaging of diffuse cardiac fibrosis.


Subject(s)
Collagen , Heart , Myocardium , Peptides , Animals , Collagen/metabolism , Fibrosis , Heart/diagnostic imaging , Humans , Mice , Molecular Imaging , Peptides/metabolism
15.
Front Neurol ; 11: 577272, 2020.
Article in English | MEDLINE | ID: mdl-33363504

ABSTRACT

Background: Tissue-type plasminogen activator (t-PA) has been the mainstay of therapeutic thrombolysis for patients with acute ischaemic stroke (AIS). However, t-PA can cause devastating intracerebral hemorrhage. t-PA can also influence the CNS in part by modulation of BBB permeability. Complement activation also occurs after AIS and has also been reported to increase BBB permeability. The complement components, C3 and C5, can also be activated by t-PA via plasmin formation and cell intrinsic complement may be involved in this process. Tenecteplase (TNK-tPA) is a t-PA variant with a longer plasma half-life, yet the ability of TNK-tPA to modulate the BBB and complement is less clear. Aim: To evaluate the effect of C5 and C5a-receptor 1 (C5aR1) inhibitors on t-PA- and TNK-tPA-mediated opening of the BBB. Methods: We used an in vitro model of the BBB where human brain endothelial cells and human astrocytes were co-cultured on the opposite sides of a porous membrane assembled in transwell inserts. The luminal (endothelial) compartment was stimulated with t-PA or TNK-tPA together with plasminogen, in the presence of PMX205 (a non-competitive C5aR1 antagonist), Avacopan (a competitive C5aR1 antagonist) or Eculizumab (a humanized monoclonal inhibitor of human C5). BBB permeability was assessed 5 and 24 h later. Immunofluorescence was also used to detect changes in C5 and C5aR1 expression in endothelial cells and astrocytes. Results: PMX205, but not Avacopan or Eculizumab, blocked t-PA-mediated increase in BBB permeability at both the 5 and 24 h time points. PMX205 also blocked TNK-tPA-mediated increase in BBB permeability. Immunofluorescence analysis revealed intracellular staining of C5 in both cell types. C5aR1 expression was also detected on the cell surfaces and also located intracellularly in both cell types. Conclusion: t-PA and TNK-tPA-mediated increase in BBB permeability involves C5aR1 receptor activation from cell-derived C5a. Selective inhibitors of C5aR1 may have therapeutic potential in AIS.

16.
Front Neurol ; 11: 589628, 2020.
Article in English | MEDLINE | ID: mdl-33224099

ABSTRACT

Rationale: More than half of patients who receive thrombolysis for acute ischaemic stroke fail to recanalize. Elucidating biological factors which predict recanalization could identify therapeutic targets for increasing thrombolysis success. Hypothesis: We hypothesize that individual patient plasmin potential, as measured by in vitro response to recombinant tissue-type plasminogen activator (rt-PA), is a biomarker of rt-PA response, and that patients with greater plasmin response are more likely to recanalize early. Methods: This study will use historical samples from the Barcelona Stroke Thrombolysis Biobank, comprised of 350 pre-thrombolysis plasma samples from ischaemic stroke patients who received serial transcranial-Doppler (TCD) measurements before and after thrombolysis. The plasmin potential of each patient will be measured using the level of plasmin-antiplasmin complex (PAP) generated after in-vitro addition of rt-PA. Levels of antiplasmin, plasminogen, t-PA activity, and PAI-1 activity will also be determined. Association between plasmin potential variables and time to recanalization [assessed on serial TCD using the thrombolysis in brain ischemia (TIBI) score] will be assessed using Cox proportional hazards models, adjusted for potential confounders. Outcomes: The primary outcome will be time to recanalization detected by TCD (defined as TIBI ≥4). Secondary outcomes will be recanalization within 6-h and recanalization and/or haemorrhagic transformation at 24-h. This analysis will utilize an expanded cohort including ~120 patients from the Targeting Optimal Thrombolysis Outcomes (TOTO) study. Discussion: If association between proteolytic response to rt-PA and recanalization is confirmed, future clinical treatment may customize thrombolytic therapy to maximize outcomes and minimize adverse effects for individual patients.

17.
Front Cardiovasc Med ; 6: 141, 2019.
Article in English | MEDLINE | ID: mdl-31620451

ABSTRACT

Cardiovascular diseases (CVD) are the number one cause of morbidity and death worldwide. As estimated by the WHO, the global death rate from CVD is 31% wherein, a staggering 85% results from stroke and myocardial infarction. Platelets, one of the key components of thrombi, have been well-investigated over decades for their pivotal role in thrombus development in healthy as well as diseased blood vessels. In hemostasis, when a vascular injury occurs, circulating platelets are arrested at the site of damage, where they are activated and aggregate to form hemostatic thrombi, thus preventing further bleeding. However, in thrombosis, pathological activation of platelets occurs, leading to uncontrolled growth of a thrombus, which in turn can occlude the blood vessel or embolize, causing downstream ischemic events. The molecular processes causing pathological thrombus development are in large similar to the processes controlling physiological thrombus formation. The biggest challenge of anti-thrombotics and anti-platelet therapeutics has been to decouple the pathological platelet response from the physiological one. Currently, marketed anti-platelet drugs are associated with major bleeding complications for this exact reason; they are not effective in targeting pathological thrombi without interfering with normal hemostasis. Recent studies have emphasized the importance of shear forces generated from blood flow, that primarily drive platelet activation and aggregation in thrombosis. Local shear stresses in obstructed blood vessels can be higher by up to two orders of magnitude as compared to healthy vessels. Leveraging abnormal shear forces in the thrombus microenvironment may allow to differentiate between thrombosis and hemostasis and develop shear-selective anti-platelet therapies. In this review, we discuss the influence of shear forces on thrombosis and the underlying mechanisms of shear-induced platelet activation. Later, we summarize the therapeutic approaches to target shear-sensitive platelet activation and pathological thrombus growth, with a particular focus on the shear-sensitive protein von Willebrand Factor (VWF). Inhibition of shear-specific platelet aggregation and targeted drug delivery may prove to be much safer and efficacious approaches over current state-of-the-art antithrombotic drugs in the treatment of cardiovascular diseases.

18.
Front Immunol ; 10: 591, 2019.
Article in English | MEDLINE | ID: mdl-30972077

ABSTRACT

Introduction: Acute ischemic stroke (AIS) is a potent trigger of immunosuppression, resulting in increased infection risk. While thrombolytic therapy with tissue-type plasminogen activator (t-PA) is still the only pharmacological treatment for AIS, plasmin, the effector protease, has been reported to suppress dendritic cells (DCs), known for their potent antigen-presenting capacity. Accordingly, in the major group of thrombolyzed AIS patients who fail to reanalyze (>60%), t-PA might trigger unintended and potentially harmful immunosuppressive consequences instead of beneficial reperfusion. To test this hypothesis, we performed an exploratory study to investigate the immunomodulatory properties of t-PA treatment in a mouse model of ischemic stroke. Methods: C57Bl/6J wild-type mice and plasminogen-deficient (plg-/-) mice were subjected to middle cerebral artery occlusion (MCAo) for 60 min followed by mouse t-PA treatment (0.9 mg/kg) at reperfusion. Behavioral testing was performed 23 h after occlusion, pursued by determination of blood counts and plasma cytokines at 24 h. Spleens and cervical lymph nodes (cLN) were also harvested and characterized by flow cytometry. Results: MCAo resulted in profound attenuation of immune activation, as anticipated. t-PA treatment not only worsened neurological deficit, but further reduced lymphocyte and monocyte counts in blood, enhanced plasma levels of both IL-10 and TNFα and decreased various conventional DC subsets in the spleen and cLN, consistent with enhanced immunosuppression and systemic inflammation after stroke. Many of these effects were abolished in plg-/- mice, suggesting plasmin as a key mediator of t-PA-induced immunosuppression. Conclusion: t-PA, via plasmin generation, may weaken the immune response post-stroke, potentially enhancing infection risk and impairing neurological recovery. Due to the large number of comparisons performed in this study, additional pre-clinical work is required to confirm these significant possibilities. Future studies will also need to ascertain the functional implications of t-PA-mediated immunosuppression for thrombolyzed AIS patients, particularly for those with failed recanalization.


Subject(s)
Fibrinolysin/immunology , Stroke/pathology , Thrombolytic Therapy/methods , Tissue Plasminogen Activator/immunology , Tissue Plasminogen Activator/therapeutic use , Animals , Cytokines/blood , Disease Models, Animal , Immunomodulation/immunology , Lymphocyte Count , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Cerebral Artery/pathology , Plasminogen/genetics
19.
J Thromb Haemost ; 17(12): 2174-2187, 2019 12.
Article in English | MEDLINE | ID: mdl-31393041

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is known to promote immunosuppression, making patients more susceptible to infection, yet potentially exerting protective effects by inhibiting central nervous system (CNS) reactivity. Plasmin, the effector protease of the fibrinolytic system, is now recognized for its involvement in modulating immune function. OBJECTIVE: To evaluate the effects of plasmin and tranexamic acid (TXA) on the immune response in wild-type and plasminogen-deficient (plg-/- ) mice subjected to TBI. METHODS: Leukocyte subsets in lymph nodes and the brain in mice post TBI were evaluated by flow cytometry and in blood with a hemocytometer. Immune responsiveness to CNS antigens was determined by Enzyme-linked Immunosorbent Spot (ELISpot) assay.  Fibrinolysis was determined by thromboelastography and measuring D-dimer and plasmin-antiplasmin complex levels. RESULTS: Plg-/-  mice, but not plg+/+  mice displayed increases in both the number and activation of various antigen-presenting cells and T cells in the cLN 1 week post TBI. Wild-type mice treated with TXA also displayed increased cellularity of the cLN 1 week post TBI together with increases in innate and adaptive immune cells. These changes occurred despite the absence of systemic hyperfibrinolysis or coagulopathy in this model of TBI. Importantly, neither plg deficiency nor TXA treatment enhanced the autoreactivity within the CNS. CONCLUSION: In the absence of systemic hyperfibrinolysis, plasmin deficiency or blockade with TXA increases migration and proliferation of conventional dendritic cells (cDCs) and various antigen-presenting cells and T cells in the draining cervical lymph node (cLN) post TBI. Tranexamic acid might also be clinically beneficial in modulating the inflammatory and immune response after TBI, but without promoting CNS autoreactivity.


Subject(s)
Antifibrinolytic Agents/pharmacology , Brain Injuries, Traumatic/drug therapy , Brain/drug effects , Dendritic Cells/drug effects , Fibrinolysis/drug effects , Immunity, Cellular/drug effects , Leukocytes/drug effects , Lymph Nodes/drug effects , Tranexamic Acid/pharmacology , Animals , Brain/immunology , Brain/pathology , Brain Injuries, Traumatic/blood , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/pathology , Cell Proliferation/drug effects , Chemotaxis, Leukocyte/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Leukocytes/immunology , Lymph Nodes/immunology , Lymphocyte Activation/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Plasminogen/deficiency , Plasminogen/genetics
20.
J Neurochem ; 107(4): 1091-101, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18796005

ABSTRACT

Glutamate is the main excitatory neurotransmitter of the CNS. Tissue-type plasminogen activator (tPA) is recognized as a modulator of glutamatergic neurotransmission. This attribute is exemplified by its ability to potentiate calcium signaling following activation of the glutamate-binding NMDA receptor (NMDAR). It has been hypothesized that tPA can directly cleave the NR1 subunit of the NMDAR and thereby potentiate NMDA-induced calcium influx. In contrast, here we show that this increase in NMDAR signaling requires tPA to be proteolytically active, but does not involve cleavage of the NR1 subunit or plasminogen. Rather, we demonstrate that enhancement of NMDAR function by tPA is mediated by a member of the low-density lipoprotein receptor (LDLR) family. Hence, this study proposes a novel functional relationship between tPA, the NMDAR, a LDLR and an unknown substrate which we suspect to be a serpin. Interestingly, whilst tPA alone failed to cleave NR1, cell-surface NMDARs did serve as an efficient and discrete proteolytic target for plasmin. Hence, plasmin and tPA can affect the NMDAR via distinct avenues. Altogether, we find that plasmin directly proteolyses the NMDAR whilst tPA functions as an indirect modulator of NMDA-induced events via LDLR engagement.


Subject(s)
Receptors, N-Methyl-D-Aspartate/drug effects , Receptors, N-Methyl-D-Aspartate/physiology , Tissue Plasminogen Activator/pharmacology , Age Factors , Amyloid beta-Protein Precursor/metabolism , Animals , Animals, Newborn , Calcium/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Drug Interactions , Fibrinolysin/pharmacology , Glutamic Acid/pharmacology , Glycine/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Membrane Potentials/radiation effects , Mice , Mice, Inbred C57BL , N-Methylaspartate/pharmacology , Neurons/drug effects , Oocytes , Patch-Clamp Techniques , Protease Nexins , Rats , Receptors, Cell Surface/metabolism , Thrombin/pharmacology , Xenopus laevis , rap GTP-Binding Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL