ABSTRACT
Antimicrobial resistance (AMR) is a major challenge to managing infectious diseases. Africa has the highest incidence of gonorrhoea, but there is a lack of comprehensive data from sparse surveillance programs. This study investigated the molecular epidemiology and AMR profiles of Neisseria gonorrhoeae isolates in KwaZulu-Natal province (KZN), South Africa. Repository isolates from patients attending public health care clinics for sexually transmitted infection (STI) care were used for phenotypic and genotypic analysis. An Etest was performed to determine antimicrobial susceptibility. Whole-genome sequencing (WGS) was used to determine epidemiology and to predict susceptibility by detecting resistance-associated genes and mutations. Among the 61 isolates, multiple sequence types were identified. Six isolates were novel, as determined by multilocus sequence typing. N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) determined 48 sequence types, of which 35 isolates had novel antimicrobial profiles. Two novel penA alleles and eight novel mtrR alleles were identified. Point mutations were detected in gyrA, parC, mtrR, penA, ponA, and porB1. This study revealed a high prevalence of AMR (penicillin 67%, tetracycline 89%, and ciprofloxacin 52%). However, spectinomycin, cefixime, ceftriaxone, and azithromycin remained 100% effective. This study is one of the first to comprehensively describe the epidemiology and AMR of N. gonorrhoeae in KZN, South Africa and Africa, using WGS. KZN has a wide strain diversity and most of these sequence types have been detected in multiple countries; however, more than half of our isolates have novel antimicrobial profiles. Continued surveillance is crucial to monitor the emergence of resistance to cefixime, ceftriaxone, and azithromycin.
Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Ceftriaxone , Drug Resistance, Bacterial/genetics , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Neisseria gonorrhoeae/genetics , South Africa/epidemiologyABSTRACT
Introduction. Intestinal helminths and microbiota share the same anatomical niche during infection and are likely to interact either directly or indirectly. Whether intestinal helminths employ bactericidal strategies that influence their microbial environment is not completely understood.Hypothesis. In the present study, the hypothesis that the adult hookworm Nippostrongylus brasiliensis produces molecules that impair bacterial growth in vitro, is tested.Aim. To investigate the in vitro bactericidal activity of Nippostrongylus brasiliensis against commensal and pathogenic bacteria.Methodology. The bactericidal effect of somatic extract and excretory-secretory products of adult Nippostrongylus brasiliensis on Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli, Salmonella enterica serovar Typhimurium, and Klebsiella pneumoniae) bacteria was assessed using growth assays. Minimum inhibitory concentration and minimum bactericidal concentration assays were performed using excretory-secretory products released from the pathogen.Results. Broad-spectrum in vitro bactericidal activity in excretory-secretory products, but not somatic extract of adult Nippostrongylus brasiliensis was detected. The bactericidal activity of excretory-secretory products was concentration-dependent, maintained after heat treatment, and preserved after repeated freezing and thawing.Conclusion. The results of this study demonstrate that helminths such as Nippostrongylus brasiliensis release molecules via their excretory-secretory pathway that have broad-spectrum bactericidal activity. The mechanisms responsible for this bactericidal activity remain to be determined and further studies aimed at isolating and identifying active bactericidal molecules are needed.
Subject(s)
Intestinal Diseases, Parasitic , Nippostrongylus , AnimalsABSTRACT
BACKGROUND: Antimicrobial resistance is limiting treatment options for Neisseria gonorrhoeae infections. To aid or replace culture and the syndromic management approach, molecular assays are required for antimicrobial susceptibility testing to guide appropriate and rapid treatment. OBJECTIVE: We aimed to detect single-nucleotide polymorphisms and plasmids associated with antimicrobial resistance from N. gonorrhoeae isolates from a clinic population in South Africa, using real-time PCR as a rapid test for AMR detection. METHODS: N. gonorrhoeae isolates, from female and male patients presenting for care at a sexually transmitted infections clinic in Durban, South Africa, were analysed using phenotypic and genotypic methods for identification and antibiotic susceptibility testing (AST). Real-time PCR and high-resolution melting analysis were used to detect porA pseudogene (species-specific marker) and resistance-associated targets. Whole-genome sequencing was used as the gold standard for the presence of point mutations. RESULTS: The real-time porA pseudogene assay identified all N. gonorrhoeae-positive isolates and specimens. Concordance between molecular detection (real-time PCR and HRM) and resistance phenotype was ≥92% for bla TEM (HLR penicillin), rpsJ_V57M (tetracycline), tetM (tetracycline), and gyrA_S91F (ciprofloxacin). Resistance determinants 16SrRNA_C1192U (spectinomycin), mtrR_G45D (azithromycin), and penA_D545S, penA_mosaic (cefixime/ceftriaxone) correlated with the WHO control isolates. CONCLUSIONS: Eight resistance-associated targets correlated with phenotypic culture results. The porA pseudogene reliably detected N. gonorrhoeae. Larger cohorts are required to validate the utility of these targets as a convenient culture-free diagnostic tool, to guide STI management in a South African population.
ABSTRACT
Antibiotic stewardship of hospital-acquired infections because of difficult-to-treat resistant (DTR) Gram-negative bacteria is a global challenge. Their increasing prevalence in South Africa has required a shift in prescribing in recent years towards colistin, an antibiotic of last resort. High toxicity levels and developing resistance to colistin are narrowing treatment options further. Recently, two new ß-lactam/ß-lactamase inhibitor combinations, ceftazidime-avibactam and ceftolozane-tazobactam were registered in South Africa, bringing hope of new options for management of these life-threatening infections. However, with increased use in the private sector, increasing levels of resistance to ceftazidime-avibactam are already being witnessed, putting their long-term viability as treatment options of last resort, in jeopardy. This review focuses on how these two vital new antibiotics should be stewarded within a framework that recognises the resistance mechanisms currently predominant in South Africa's multi-drug and DTR Gram-negative bacteria. Moreover, the withholding of their use for resistant infections that can be treated with currently available antibiotics is a critical part of stewardship, if these antibiotics are to be conserved in the long term.
ABSTRACT
Introduction: Treatment of gonorrhoea infection is limited by the increasing prevalence of multidrug-resistant strains. Cost-effective molecular diagnostic tests can guide effective antimicrobial stewardship. The aim of this study was to correlate mRNA expression levels in Neisseria gonorrhoeae antibiotic target genes and efflux pump genes to antibiotic resistance in our population. Methods: This study investigated the expression profile of antibiotic resistance-associated genes (penA, ponA, pilQ, mtrR, mtrA, mtrF, gyrA, parC, parE, rpsJ, 16S rRNA, and 23S rRNA) and efflux pump genes (macAB, norM, and mtrCDE), by quantitative real-time PCR, in clinical isolates from KwaZulu-Natal, South Africa. Whole-genome sequencing was used to determine the presence or absence of mutations. Results: N. gonorrhoeae isolates, from female and male patients presenting for care at clinics in KwaZulu-Natal, South Africa, were analysed. As determined by binomial regression and ROC analysis, the most significant (p ≤ 0.05) markers for resistance prediction in this population, and their cutoff values, were determined to be mtrC (p = 0.024; cutoff <0.089), gyrA (p = 0.027; cutoff <0.0518), parE (p = 0.036; cutoff <0.0033), rpsJ (p = 0.047; cutoff <0.0012), and 23S rRNA (p = 0.042; cutoff >7.754). Conclusion: Antimicrobial stewardship includes exploring options to conserve currently available drugs for gonorrhoea treatment. There is the potential to predict an isolate as either susceptible or nonsusceptible based on the mRNA expression level of specific candidate markers, to inform patient management. This real-time qPCR approach, with few targets, can be further investigated for use as a potentially cost-effective diagnostic tool to detect resistance.
ABSTRACT
BACKGROUND: Salmonella enterica serotype Enteritidis is a universally recognized cause of foodborne disease. In South Africa, outbreaks of foodborne disease are generally under reported. We investigated the etiology of acute gastroenteritis in 216 patients who presented to a rural hospital in KwaZulu-Natal, South Africa, after consuming a meal at a school function. MATERIALS AND METHODS: Stool specimens from 37 patients, as well as two food samples, were available for microbiological investigation. Similarity between isolates was investigated using phenotypic and genotypic techniques. Phenotypic investigations included morphological, biochemical, and antibiogram profiling. Genotypic relatedness was determined with pulsed-field gel electrophoresis analysis. The available epidemiological data were also described. RESULTS: Salmonella Enteritidis was isolated from 18 patients and 1 food sample. Isolates were phenotypically and genotypically indistinguishable. Epidemiological data suggest a point-source outbreak with a possibility of continued transmission. CONCLUSIONS: The results suggest a foodborne Salmonella Enteritidis outbreak due to contaminated food served at the school function. Epidemiological investigations continue to be extremely difficult in rural areas.
Subject(s)
Disease Outbreaks , Salmonella Food Poisoning/epidemiology , Salmonella Food Poisoning/microbiology , Salmonella enteritidis/isolation & purification , Adolescent , Adult , Aged , Child , Child, Preschool , Electrophoresis, Gel, Pulsed-Field , Feces/microbiology , Female , Food Microbiology , Gastroenteritis/etiology , Genetic Variation , Humans , Infant , Male , Microbial Sensitivity Tests , Middle Aged , Molecular Typing , Rural Health , Salmonella Food Poisoning/physiopathology , Salmonella enteritidis/classification , Salmonella enteritidis/drug effects , Salmonella enteritidis/genetics , South Africa/epidemiology , Young AdultABSTRACT
Neisseria gonorrhoeae, Chlamydia trachomatis, Trichomonas vaginalis and Mycoplasma genitalium are the four main aetiologies of sexually transmitted infections responsible for vaginal discharge syndrome (VDS). Commercially available multiplex polymerase chain reaction (PCR) assays are expensive and generally not customisable. We evaluated a highly customisable singleplex PCR approach by testing it in parallel with the Anyplex™ II STI-7 detection assay in a cohort of South African women that presented with VDS between May 2016 and January 2017. Our multiple singleplex PCR strategy proved to be a simple, accurate, rapid, affordable and scalable option for diagnosing VDS.
ABSTRACT
Africa has the highest incidence of Neisseria gonorrhoeae infections globally, but data on these isolates is scarce. Here, we report six N. gonorrhoeae genome sequences with five novel sequence types isolated from patients with uncomplicated genitourinary gonorrhea in South Africa.
ABSTRACT
BACKGROUND: Drug-resistant tuberculosis (TB) remains extremely difficult to treat because there are often few remaining active medications and limited diagnostic options to detect resistance. Resistance to isoniazid is typically caused by mutations in either katG or the inhA promoter. inhA mutations confer low-level resistance to isoniazid and cross-resistance to ethionamide while katG mutations confer high-level isoniazid resistance and no cross-resistance. Line Probe Assays (LPAs) that detect mutations in katG and inhA are currently performed on all positive TB cultures in KwaZulu-Natal province, South Africa, but the frequency of inhA mutations in drug-resistant TB patients has not been examined. METHODS: We sought to determine the proportion of patients who could potentially benefit from high-dose isoniazid and who may be resistant to ethionamide. We reviewed 994 LPA (Hain MTBDRplus) results at the TB reference laboratory in KwaZulu-Natal to determine the frequency of mutations in either katG or the inhA promoter. We stratified these results by drug-resistance category (i.e., MDR-TB, pre-XDR-TB, and XDR-TB) as determined by phenotypic drug-susceptibility testing. RESULTS: Among MDR- and XDR-TB isolates, the prevalence of inhA mutations without a concurrent katG mutation was 14.8% and 10.3% respectively. The prevalence of inhA mutations with OR without a katG mutation was 30.3% and 82.8%, respectively. CONCLUSION: More than 10% of patients with MDR- and XDR-TB may benefit from high-dose isoniazid. Although ethionamide is empirically included in all MDR- and XDR-TB regimens, nearly a third of MDR-TB patients and a majority of XDR-TB patients likely have resistance to ethionamide. Laboratories performing line probe assays should report specific band patterns so that clinicians may adjust treatment regimens accordingly.