Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 180(6): 1067-1080.e16, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32160527

ABSTRACT

Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.


Subject(s)
Multiple Sclerosis/metabolism , Propionates/immunology , Propionates/metabolism , Adult , Aged , Disease Progression , Feces/chemistry , Feces/microbiology , Female , Humans , Immunomodulation/physiology , Male , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy , Propionates/therapeutic use , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology
2.
Cell ; 163(3): 571-82, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26496604

ABSTRACT

The bacteria Yersinia pestis is the etiological agent of plague and has caused human pandemics with millions of deaths in historic times. How and when it originated remains contentious. Here, we report the oldest direct evidence of Yersinia pestis identified by ancient DNA in human teeth from Asia and Europe dating from 2,800 to 5,000 years ago. By sequencing the genomes, we find that these ancient plague strains are basal to all known Yersinia pestis. We find the origins of the Yersinia pestis lineage to be at least two times older than previous estimates. We also identify a temporal sequence of genetic changes that lead to increased virulence and the emergence of the bubonic plague. Our results show that plague infection was endemic in the human populations of Eurasia at least 3,000 years before any historical recordings of pandemics.


Subject(s)
Plague/microbiology , Yersinia pestis/classification , Yersinia pestis/isolation & purification , Animals , Asia , DNA, Bacterial/genetics , Europe , History, Ancient , History, Medieval , Humans , Plague/history , Plague/transmission , Siphonaptera/microbiology , Tooth/microbiology , Yersinia pestis/genetics
3.
Nature ; 601(7892): 252-256, 2022 01.
Article in English | MEDLINE | ID: mdl-34912116

ABSTRACT

Microbial genes encode the majority of the functional repertoire of life on earth. However, despite increasing efforts in metagenomic sequencing of various habitats1-3, little is known about the distribution of genes across the global biosphere, with implications for human and planetary health. Here we constructed a non-redundant gene catalogue of 303 million species-level genes (clustered at 95% nucleotide identity) from 13,174 publicly available metagenomes across 14 major habitats and use it to show that most genes are specific to a single habitat. The small fraction of genes found in multiple habitats is enriched in antibiotic-resistance genes and markers for mobile genetic elements. By further clustering these species-level genes into 32 million protein families, we observed that a small fraction of these families contain the majority of the genes (0.6% of families account for 50% of the genes). The majority of species-level genes and protein families are rare. Furthermore, species-level genes, and in particular the rare ones, show low rates of positive (adaptive) selection, supporting a model in which most genetic variability observed within each protein family is neutral or nearly neutral.


Subject(s)
Metagenome , Metagenomics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Ecosystem , Humans , Metagenome/genetics
4.
Nature ; 535(7612): 376-81, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27409811

ABSTRACT

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Subject(s)
Gastrointestinal Microbiome/physiology , Insulin Resistance , Metabolome , Serum/metabolism , Amino Acids, Branched-Chain/biosynthesis , Amino Acids, Branched-Chain/metabolism , Animals , Bacteroides/physiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/microbiology , Fasting/blood , Fasting/metabolism , Glucose Intolerance/blood , Glucose Intolerance/microbiology , Humans , Male , Metagenome , Mice , Mice, Inbred C57BL , Netherlands , Prevotella/physiology
5.
PLoS Genet ; 14(10): e1007580, 2018 10.
Article in English | MEDLINE | ID: mdl-30312316

ABSTRACT

Cattle and other ruminants produce large quantities of methane (~110 million metric tonnes per annum), which is a potent greenhouse gas affecting global climate change. Methane (CH4) is a natural by-product of gastro-enteric microbial fermentation of feedstuffs in the rumen and contributes to 6% of total CH4 emissions from anthropogenic-related sources. The extent to which the host genome and rumen microbiome influence CH4 emission is not yet well known. This study confirms individual variation in CH4 production was influenced by individual host (cow) genotype, as well as the host's rumen microbiome composition. Abundance of a small proportion of bacteria and archaea taxa were influenced to a limited extent by the host's genotype and certain taxa were associated with CH4 emissions. However, the cumulative effect of all bacteria and archaea on CH4 production was 13%, the host genetics (heritability) was 21% and the two are largely independent. This study demonstrates variation in CH4 emission is likely not modulated through cow genetic effects on the rumen microbiome. Therefore, the rumen microbiome and cow genome could be targeted independently, by breeding low methane-emitting cows and in parallel, by investigating possible strategies that target changes in the rumen microbiome to reduce CH4 emissions in the cattle industry.


Subject(s)
Cattle/microbiology , Methane/metabolism , Microbiota/physiology , Milk/chemistry , Rumen/microbiology , Animals , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Cattle/classification , Cattle/genetics , Female , Genome/genetics , Genotype , Host Microbial Interactions/genetics , Microbiota/genetics , Rumen/metabolism
6.
Gastroenterology ; 157(3): 637-646.e4, 2019 09.
Article in English | MEDLINE | ID: mdl-31095949

ABSTRACT

BACKGROUND & AIMS: Enteropathy and small-intestinal ulcers are common adverse effects of nonsteroidal anti-inflammatory drugs such as acetylsalicylic acid (ASA). Safe, cytoprotective strategies are needed to reduce this risk. Specific bifidobacteria might have cytoprotective activities, but little is known about these effects in humans. We used serial video capsule endoscopy (VCE) to assess the efficacy of a specific Bifidobacterium strain in healthy volunteers exposed to ASA. METHODS: We performed a single-site, double-blind, parallel-group, proof-of-concept analysis of 75 heathy volunteers given ASA (300 mg) daily for 6 weeks, from July 31 through October 24, 2017. The participants were randomly assigned (1:1) to groups given oral capsules of Bifidobacterium breve (Bif195) (≥5 × 1010 colony-forming units) or placebo daily for 8 weeks. Small-intestinal damage was analyzed by serial VCE at 6 visits. The area under the curve (AUC) for intestinal damage (Lewis score) and the AUC value for ulcers were the primary and first-ranked secondary end points of the trial, respectively. RESULTS: Efficacy data were obtained from 35 participants given Bif195 and 31 given placebo. The AUC for Lewis score was significantly lower in the Bif195 group (3040 ± 1340 arbitrary units) than the placebo group (4351 ± 3195) (P = .0376). The AUC for ulcer number was significantly lower in the Bif195 group (50.4 ± 53.1 arbitrary units) than in the placebo group (75.2 ± 85.3 arbitrary units) (P = .0258). Twelve adverse events were reported from the Bif195 group and 20 from the placebo group. None of the events was determined to be related to Bif195 intake. CONCLUSIONS: In a randomized, double-blind trial of healthy volunteers, we found oral Bif195 to safely reduce the risk of small-intestinal enteropathy caused by ASA. ClinicalTrials.gov no: NCT03228589.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/adverse effects , Bifidobacterium breve/growth & development , Gastrointestinal Microbiome , Intestine, Small/drug effects , Intestine, Small/microbiology , Probiotics/administration & dosage , Ulcer/prevention & control , Adolescent , Adult , Capsule Endoscopy , Double-Blind Method , Female , Healthy Volunteers , Humans , Intestine, Small/pathology , Ireland , Male , Probiotics/adverse effects , Time Factors , Ulcer/chemically induced , Ulcer/microbiology , Ulcer/pathology , Young Adult
7.
Metabolomics ; 16(7): 76, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32564244

ABSTRACT

INTRODUCTION: Gut microbiota is, along with adipose tissue, recognized as a source for many metabolic and inflammatory disturbances that may contribute to the individual's state of health. OBJECTIVES: We investigated in cross-sectional setting the feasibility of utilizing GlycA, a novel low grade inflammatory marker, and traditional low grade inflammatory marker, high sensitivity CRP (hsCRP), in reflecting serum metabolomics status and gut microbiome diversity. METHODS: Fasting serum samples of overweight/obese pregnant women (n = 335, gestational weeks: mean 13.8) were analysed for hsCRP by immunoassay, GlycA and metabolomics status by NMR metabolomics and faecal samples for gut microbiome diversity by metagenomics. The benefits of GlycA as a metabolic marker were investigated against hsCRP. RESULTS: The GlycA concentration correlated with more of the metabolomics markers (144 out of 157), than hsCRP (55 out of 157) (FDR < 0.05). The results remained essentially the same when potential confounding factors known to associate with GlycA and hsCRP levels were taken into account (P < 0.05). This was attributable to the detected correlations between GlycA and the constituents and concentrations of several sized VLDL-particles and branched chain amino acids, which were statistically non-significant with regard to hsCRP. GlycA, but not hsCRP, correlated inversely with gut microbiome diversity. CONCLUSION: GlycA is a superior marker than hsCRP in assessing the metabolomic profile and gut microbiome diversity. It is proposed that GlycA may act as a novel marker that reflects both the gut microbiome and adipose tissue originated metabolic aberrations; this proposal will need to be verified with regard to clinical outcomes. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov, NCT01922791, August 14, 2013.


Subject(s)
Gastrointestinal Microbiome/physiology , Inflammation/metabolism , Acetylglucosamine/blood , Adult , Biomarkers/blood , C-Reactive Protein/metabolism , Cardiovascular Diseases/blood , Cardiovascular Diseases/metabolism , Cross-Sectional Studies , Feces/chemistry , Female , Fibrinogen/metabolism , Glycoproteins/blood , Haptoglobins/metabolism , Humans , Inflammation/blood , Metabolomics/methods , Obesity/blood , Obesity/metabolism , Pregnancy , Serum Amyloid A Protein/metabolism
8.
Gut ; 68(1): 83-93, 2019 01.
Article in English | MEDLINE | ID: mdl-29097438

ABSTRACT

OBJECTIVE: To investigate whether a whole grain diet alters the gut microbiome and insulin sensitivity, as well as biomarkers of metabolic health and gut functionality. DESIGN: 60 Danish adults at risk of developing metabolic syndrome were included in a randomised cross-over trial with two 8-week dietary intervention periods comprising whole grain diet and refined grain diet, separated by a washout period of ≥6 weeks. The response to the interventions on the gut microbiome composition and insulin sensitivity as well on measures of glucose and lipid metabolism, gut functionality, inflammatory markers, anthropometry and urine metabolomics were assessed. RESULTS: 50 participants completed both periods with a whole grain intake of 179±50 g/day and 13±10 g/day in the whole grain and refined grain period, respectively. Compliance was confirmed by a difference in plasma alkylresorcinols (p<0.0001). Compared with refined grain, whole grain did not significantly alter glucose homeostasis and did not induce major changes in the faecal microbiome. Also, breath hydrogen levels, plasma short-chain fatty acids, intestinal integrity and intestinal transit time were not affected. The whole grain diet did, however, compared with the refined grain diet, decrease body weight (p<0.0001), serum inflammatory markers, interleukin (IL)-6 (p=0.009) and C-reactive protein (p=0.003). The reduction in body weight was consistent with a reduction in energy intake, and IL-6 reduction was associated with the amount of whole grain consumed, in particular with intake of rye. CONCLUSION: Compared with refined grain diet, whole grain diet did not alter insulin sensitivity and gut microbiome but reduced body weight and systemic low-grade inflammation. TRIAL REGISTRATION NUMBER: NCT01731366; Results.


Subject(s)
Gastrointestinal Microbiome , Inflammation/blood , Weight Loss , Whole Grains , Adult , Aged , Blood Glucose/metabolism , Cross-Over Studies , Denmark , Diet , Energy Intake , Feces/microbiology , Female , Humans , Inflammation/diet therapy , Insulin Resistance , Interleukin-6/blood , Lipids/blood , Male , Metabolomics , Middle Aged
9.
Nature ; 500(7464): 541-6, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23985870

ABSTRACT

We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.


Subject(s)
Bacteria/isolation & purification , Biomarkers/metabolism , Gastrointestinal Tract/microbiology , Metagenome , Adiposity , Adult , Bacteria/classification , Bacteria/genetics , Body Mass Index , Case-Control Studies , Diet , Dyslipidemias/microbiology , Energy Metabolism , Europe/ethnology , Female , Genes, Bacterial , Humans , Inflammation/microbiology , Insulin Resistance , Male , Metagenome/genetics , Obesity/metabolism , Obesity/microbiology , Overweight/metabolism , Overweight/microbiology , Phylogeny , Thinness/microbiology , Weight Gain , Weight Loss , White People
10.
Environ Microbiol ; 19(3): 835-841, 2017 03.
Article in English | MEDLINE | ID: mdl-28028921

ABSTRACT

Oscillospira is an under-studied anaerobic bacterial genus from Clostridial cluster IV that has resisted cultivation for over a century since the first time it was observed. In recent years its 16S rRNA gene was identified in several human gut microbiota studies where it was often associated with interesting traits, especially leanness. However, very little is known about its metabolism or physiology. Here we used nearly complete genomes derived from shot-gun metagenomic data from the human gut to analyze Oscillospira and related bacteria. We used sequence similarity, gene neighbourhood information and manual metabolic pathway curation to decipher key metabolic features of this intriguing bacterial genus. We infer that Oscillospira species are butyrate producers, and at least some of them have the ability to utilize glucuronate, a common animal-derived sugar that is both produced by the human host and consumed by that host in diets rich in animal products. These findings could help explain diet-related inter-individual variation in faecal Oscillospira levels as well as the observation that the presence of this genus is reduced in diseases that involve inflammation.


Subject(s)
Clostridiales/classification , Gastrointestinal Microbiome , Animals , Butyrates/metabolism , Clostridiales/genetics , Clostridium/genetics , Feces/microbiology , Genome, Bacterial , Humans , Metabolic Networks and Pathways , Metagenomics , RNA, Ribosomal, 16S
11.
Nat Methods ; 10(12): 1196-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24141494

ABSTRACT

To quantify known and unknown microorganisms at species-level resolution using shotgun sequencing data, we developed a method that establishes metagenomic operational taxonomic units (mOTUs) based on single-copy phylogenetic marker genes. Applied to 252 human fecal samples, the method revealed that on average 43% of the species abundance and 58% of the richness cannot be captured by current reference genome-based methods. An implementation of the method is available at http://www.bork.embl.de/software/mOTU/.


Subject(s)
Metagenomics , Microbiota , Sequence Alignment/methods , Algorithms , Calibration , Cluster Analysis , Computational Biology/methods , DNA, Ribosomal/genetics , Genetic Linkage , Genetic Markers , Genome , Humans , Intestines/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
12.
Plant Physiol ; 161(4): 1783-94, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23447525

ABSTRACT

Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations of stresses such as heat and drought or cold and high light intensity have profound effects on crop performance and yields. Thus, delineation of the regulatory networks and metabolic pathways responding to single and multiple concurrent stresses is required for breeding and engineering crop stress tolerance. Many studies have described transcriptome changes in response to single stresses. However, exposure of plants to a combination of stress factors may require agonistic or antagonistic responses or responses potentially unrelated to responses to the corresponding single stresses. To analyze such responses, we initially compared transcriptome changes in 10 Arabidopsis (Arabidopsis thaliana) ecotypes using cold, heat, high-light, salt, and flagellin treatments as single stress factors as well as their double combinations. This revealed that some 61% of the transcriptome changes in response to double stresses were not predic from the responses to single stress treatments. It also showed that plants prioritized between potentially antagonistic responses for only 5% to 10% of the responding transcripts. This indicates that plants have evolved to cope with combinations of stresses and, therefore, may be bred to endure them. In addition, using a subset of this data from the Columbia and Landsberg erecta ecotypes, we have delineated coexpression network modules responding to single and combined stresses.


Subject(s)
Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Transcriptome/genetics , Arabidopsis/radiation effects , Cluster Analysis , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Gene Regulatory Networks/genetics , Light , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stress, Physiological/radiation effects , Transcriptome/radiation effects
13.
BMC Genomics ; 14: 722, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24148294

ABSTRACT

BACKGROUND: Low temperature leads to major crop losses every year. Although several studies have been conducted focusing on diversity of cold tolerance level in multiple phenotypically divergent Arabidopsis thaliana (A. thaliana) ecotypes, genome-scale molecular understanding is still lacking. RESULTS: In this study, we report genome-scale transcript response diversity of 10 A. thaliana ecotypes originating from different geographical locations to non-freezing cold stress (10°C). To analyze the transcriptional response diversity, we initially compared transcriptome changes in all 10 ecotypes using Arabidopsis NimbleGen ATH6 microarrays. In total 6061 transcripts were significantly cold regulated (p < 0.01) in 10 ecotypes, including 498 transcription factors and 315 transposable elements. The majority of the transcripts (75%) showed ecotype specific expression pattern. By using sequence data available from Arabidopsis thaliana 1001 genome project, we further investigated sequence polymorphisms in the core cold stress regulon genes. Significant numbers of non-synonymous amino acid changes were observed in the coding region of the CBF regulon genes. Considering the limited knowledge about regulatory interactions between transcription factors and their target genes in the model plant A. thaliana, we have adopted a powerful systems genetics approach- Network Component Analysis (NCA) to construct an in-silico transcriptional regulatory network model during response to cold stress. The resulting regulatory network contained 1,275 nodes and 7,720 connections, with 178 transcription factors and 1,331 target genes. CONCLUSIONS: A. thaliana ecotypes exhibit considerable variation in transcriptome level responses to non-freezing cold stress treatment. Ecotype specific transcripts and related gene ontology (GO) categories were identified to delineate natural variation of cold stress regulated differential gene expression in the model plant A. thaliana. The predicted regulatory network model was able to identify new ecotype specific transcription factors and their regulatory interactions, which might be crucial for their local geographic adaptation to cold temperature. Additionally, since the approach presented here is general, it could be adapted to study networks regulating biological process in any biological systems.


Subject(s)
Arabidopsis/genetics , Gene Regulatory Networks/genetics , Genome, Plant , Adaptation, Physiological/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chlorophyll/biosynthesis , Circadian Rhythm , Cold Temperature , DNA Transposable Elements/genetics , Ecotype , Gene Expression Profiling , Gene Expression Regulation, Plant , Light , Transcription Factors/genetics , Transcription Factors/metabolism
14.
Tumour Biol ; 34(6): 3839-51, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23881388

ABSTRACT

High levels of Tissue Inhibitor of Metalloproteinases-1 (TIMP1) are associated with poor prognosis, reduced response to chemotherapy, and, potentially, also poor response to endocrine therapy in breast cancer patients. Our objective was to further investigate the hypothesis that TIMP1 is associated with endocrine sensitivity. We established a panel of 11 MCF-7 subclones with a wide range of TIMP1 mRNA and protein expression levels. Cells with high expression of TIMP1 versus low TIMP1 displayed significantly reduced sensitivity to the antiestrogen fulvestrant (ICI 182,780, Faslodex®), while TIMP1 levels did not influence the sensitivity to 4-hydroxytamoxifen. An inverse correlation between expression of the progesterone receptor and TIMP1 was found, but TIMP1 levels did not correlate with estrogen receptor levels or growth-promoting effects of estrogen (estradiol, E2). Additionally, the effects of fulvestrant, 4-hydroxytamoxifen, or estrogen on estrogen receptor expression were not associated with TIMP1 levels. Gene expression analyses revealed associations between expression of TIMP1 and genes involved in metabolic pathways, epidermal growth factor receptor 1/cancer signaling pathways, and cell cycle. Gene and protein expression analyses showed no general defects in estrogen receptor signaling except from lack of progesterone receptor expression and estrogen inducibility in clones with high TIMP1. The present study suggests a relation between high expression level of TIMP1 and loss of progesterone receptor expression combined with fulvestrant resistance. Our findings in vitro may have clinical implications as the data suggest that high tumor levels of TIMP1 may be a predictive biomarker for reduced response to fulvestrant.


Subject(s)
Drug Resistance, Neoplasm/genetics , Estradiol/analogs & derivatives , Gene Expression Regulation, Neoplastic , Receptors, Progesterone/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Blotting, Western , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Clone Cells/metabolism , Cluster Analysis , Down-Regulation , Estradiol/pharmacology , Female , Fulvestrant , Humans , MCF-7 Cells , Oligonucleotide Array Sequence Analysis , Receptors, Progesterone/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transcriptome/drug effects
15.
Reprod Biol Endocrinol ; 11: 50, 2013 May 28.
Article in English | MEDLINE | ID: mdl-23714422

ABSTRACT

BACKGROUND: Radiotherapy is used routinely to treat testicular cancer. Testicular cells vary in radio-sensitivity and the aim of this study was to investigate cellular and molecular changes caused by low dose irradiation of mice testis and to identify transcripts from different cell types in the adult testis. METHODS: Transcriptome profiling was performed on total RNA from testes sampled at various time points (n = 17) after 1 Gy of irradiation. Transcripts displaying large overall expression changes during the time series, but small expression changes between neighbouring time points were selected for further analysis. These transcripts were separated into clusters and their cellular origin was determined. Immunohistochemistry and in silico quantification was further used to study cellular changes post-irradiation (pi). RESULTS: We identified a subset of transcripts (n = 988) where changes in expression pi can be explained by changes in cellularity. We separated the transcripts into five unique clusters that we associated with spermatogonia, spermatocytes, early spermatids, late spermatids and somatic cells, respectively. Transcripts in the somatic cell cluster showed large changes in expression pi, mainly caused by changes in cellularity. Further investigations revealed that the low dose irradiation seemed to cause Leydig cell hyperplasia, which contributed to the detected expression changes in the somatic cell cluster. CONCLUSIONS: The five clusters represent gene expression in distinct cell types of the adult testis. We observed large expression changes in the somatic cell profile, which mainly could be attributed to changes in cellularity, but hyperplasia of Leydig cells may also play a role. We speculate that the possible hyperplasia may be caused by lower testosterone production and inadequate inhibin signalling due to missing germ cells.


Subject(s)
Testis/metabolism , Testis/radiation effects , Transcriptome/genetics , Algorithms , Animals , Gene Expression Profiling , Leydig Cells/metabolism , Leydig Cells/radiation effects , Male , Mice , Mice, Inbred C3H , Microarray Analysis , Sertoli Cells/metabolism , Sertoli Cells/radiation effects , Spermatids/metabolism , Spermatids/radiation effects , Spermatocytes/metabolism , Spermatocytes/radiation effects , Spermatogonia/metabolism , Spermatogonia/radiation effects , X-Rays
16.
Bioinform Adv ; 3(1): vbad060, 2023.
Article in English | MEDLINE | ID: mdl-37213867

ABSTRACT

Motivation: Metagenomic binning facilitates the reconstruction of genomes and identification of Metagenomic Species Pan-genomes or Metagenomic Assembled Genomes. We propose a method for identifying a set of de novo representative genes, termed signature genes, which can be used to measure the relative abundance and used as markers of each metagenomic species with high accuracy. Results: An initial set of the 100 genes that correlate with the median gene abundance profile of the entity is selected. A variant of the coupon collector's problem was utilized to evaluate the probability of identifying a certain number of unique genes in a sample. This allows us to reject the abundance measurements of strains exhibiting a significantly skewed gene representation. A rank-based negative binomial model is employed to assess the performance of different gene sets across a large set of samples, facilitating identification of an optimal signature gene set for the entity. When benchmarked the method on a synthetic gene catalog, our optimized signature gene sets estimate relative abundance significantly closer to the true relative abundance compared to the starting gene sets extracted from the metagenomic species. The method was able to replicate results from a study with real data and identify around three times as many metagenomic entities. Availability and implementation: The code used for the analysis is available on GitHub: https://github.com/trinezac/SG_optimization. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

17.
Commun Biol ; 6(1): 700, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422584

ABSTRACT

Most investigations of geographical within-species differences are limited to focusing on a single species. Here, we investigate global differences for multiple bacterial species using a dataset of 757 metagenomics sewage samples from 101 countries worldwide. The within-species variations were determined by performing genome reconstructions, and the analyses were expanded by gene focused approaches. Applying these methods, we recovered 3353 near complete (NC) metagenome assembled genomes (MAGs) encompassing 1439 different MAG species and found that within-species genomic variation was in 36% of the investigated species (12/33) coherent with regional separation. Additionally, we found that variation of organelle genes correlated less with geography compared to metabolic and membrane genes, suggesting that the global differences of these species are caused by regional environmental selection rather than dissemination limitations. From the combination of the large and globally distributed dataset and in-depth analysis, we present a wide investigation of global within-species phylogeny of sewage bacteria. The global differences found here emphasize the need for worldwide data sets when making global conclusions.


Subject(s)
Bacteria , Sewage , Phylogeny , Sewage/microbiology , Bacteria/genetics , Cluster Analysis , Geography
18.
Chest ; 164(2): 503-516, 2023 08.
Article in English | MEDLINE | ID: mdl-36925044

ABSTRACT

BACKGROUND: OSA is a common sleep-breathing disorder linked to increased risk of cardiovascular disease. Intermittent upper airway obstruction and hypoxia, hallmarks of OSA, have been shown in animal models to induce substantial changes to the gut microbiota composition, and subsequent transplantation of fecal matter to other animals induced changes in BP and glucose metabolism. RESEARCH QUESTION: Does OSA in adults associate with the composition and functional potential of the human gut microbiota? STUDY DESIGN AND METHODS: We used respiratory polygraphy data from up to 3,570 individuals 50 to 64 years of age from the population-based Swedish Cardiopulmonary bioimage Study combined with deep shotgun metagenomics of fecal samples to identify cross-sectional associations between three OSA parameters covering apneas and hypopneas, cumulative sleep time in hypoxia, and number of oxygen desaturation events with gut microbiota composition. Data collection about potential confounders was based on questionnaires, onsite anthropometric measurements, plasma metabolomics, and linkage with the Swedish Prescribed Drug Register. RESULTS: We found that all three OSA parameters were associated with lower diversity of species in the gut. Furthermore, in multivariable-adjusted analysis, the OSA-related hypoxia parameters were associated with the relative abundance of 128 gut bacterial species, including higher abundance of Blautia obeum and Collinsella aerofaciens. The latter species was also independently associated with increased systolic BP. Furthermore, the cumulative time in hypoxia during sleep was associated with the abundance of genes involved in nine gut microbiota metabolic pathways, including propionate production from lactate. Finally, we observed two heterogeneous sets of plasma metabolites with opposite association with species positively and negatively associated with hypoxia parameters, respectively. INTERPRETATION: OSA-related hypoxia, but not the number of apneas/hypopneas, is associated with specific gut microbiota species and functions. Our findings lay the foundation for future research on the gut microbiota-mediated health effects of OSA.


Subject(s)
Gastrointestinal Microbiome , Sleep Apnea, Obstructive , Adult , Animals , Humans , Cross-Sectional Studies , Sweden/epidemiology , Hypoxia
19.
BMC Genomics ; 13: 514, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23020652

ABSTRACT

BACKGROUND: Guinea pig (Cavia porcellus) is an important model for human intestinal research. We have characterized the faecal microbiota of 60 guinea pigs using Illumina shotgun metagenomics, and used this data to compile a gene catalogue of its prevalent microbiota. Subsequently, we compared the guinea pig microbiome to existing human gut metagenome data from the MetaHIT project. RESULTS: We found that the bacterial richness obtained for human samples was lower than for guinea pig samples. The intestinal microbiotas of both species were dominated by the two phyla Bacteroidetes and Firmicutes, but at genus level, the majority of identified genera (320 of 376) were differently abundant in the two hosts. For example, the guinea pig contained considerably more of the mucin-degrading Akkermansia, as well as of the methanogenic archaea Methanobrevibacter than found in humans. Most microbiome functional categories were less abundant in guinea pigs than in humans. Exceptions included functional categories possibly reflecting dehydration/rehydration stress in the guinea pig intestine. Finally, we showed that microbiological databases have serious anthropocentric biases, which impacts model organism research. CONCLUSIONS: The results lay the foundation for future gastrointestinal research applying guinea pigs as models for humans.


Subject(s)
Bacteroidetes/genetics , Intestines/microbiology , Metagenomics/methods , Animals , Bacteroidetes/isolation & purification , Guinea Pigs , Humans
20.
EMBO J ; 27(16): 2214-21, 2008 Aug 20.
Article in English | MEDLINE | ID: mdl-18650934

ABSTRACT

Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/genetics , Cell Nucleus/enzymology , Cell Nucleus/genetics , Gene Expression Regulation, Plant , Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Cell Nucleus/drug effects , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Indoles/metabolism , Mutation/genetics , Nuclear Proteins , Phosphoproteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Pseudomonas syringae/drug effects , Reverse Transcriptase Polymerase Chain Reaction , Salicylic Acid/pharmacology , Thiazoles/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL