Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Publication year range
1.
Antimicrob Agents Chemother ; 68(1): e0079423, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38112526

ABSTRACT

Clofazimine is recommended for the treatment of rifampicin-resistant tuberculosis (RR-TB), but there is currently no verified dosing guideline for its use in children. There is only limited safety and no pharmacokinetic (PK) data available for children. We aimed to characterize clofazimine PK and its relationship with QT-interval prolongation in children. An observational cohort study of South African children <18 years old routinely treated for RR-TB with a clofazimine-containing regimen was analyzed. Clofazimine 100 mg gelatin capsules were given orally once daily (≥20 kg body weight), every second day (10 to <20 kg), or thrice weekly (<10 kg). PK sampling and electrocardiograms were completed pre-dose and at 1, 4, and 10 hours post-dose, and the population PK and Fridericia-corrected QT (QTcF) interval prolongation were characterized. Fifty-four children contributed both PK and QTcF data, with a median age (2.5th-97.5th centiles) of 3.3 (0.5-15.6) years; five children were living with HIV. Weekly area under the time-concentration curve at steady state was 79.1 (15.0-271) mg.h/L compared to an adult target of 60.9 (56.0-66.6) mg.h/L. Children living with HIV had four times higher clearance compared to those without. No child had a QTcF ≥500 ms. A linear concentration-QTcF relationship was found, with a drug effect of 0.05 (0.027, 0.075) ms/µg/L. In some of the first PK data in children, we found clofazimine exposure using an off-label dosing strategy was higher in children versus adults. Clofazimine concentrations were associated with an increase in QTcF, but severe prolongation was not observed. More data are required to inform dosing strategies in children.


Subject(s)
Clofazimine , Tuberculosis, Multidrug-Resistant , Adolescent , Child , Child, Preschool , Humans , Clofazimine/adverse effects , Clofazimine/pharmacokinetics , HIV Infections/drug therapy , Rifampin/pharmacology , Tuberculosis, Multidrug-Resistant/drug therapy
2.
J Shoulder Elbow Surg ; 33(7): 1555-1562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38122891

ABSTRACT

BACKGROUND: Component positioning affects clinical outcomes of reverse shoulder arthroplasty, which necessitates an implantation technique that is reproducible, consistent, and reliable. This study aims to assess the accuracy and precision of positioning the humeral component in planned retroversion using a forearm referencing guide. METHODS: Computed tomography scans of 54 patients (27 males and 27 females) who underwent primary reverse shoulder arthroplasty for osteoarthritis or cuff tear arthropathy were evaluated. A standardized surgical technique was used to place the humeral stem in 15° of retroversion. Version was assessed intraoperatively visualizing the retroversion guide from above and referencing the forearm axis. Metal subtraction techniques from postoperative computed tomography images allowed for the generation of 3D models of the humerus and for evaluation of the humeral component position. Anatomical humeral plane and implant planes were defined and the retroversion 3D angle between identified planes was recorded for each patient. Accuracy and precision were assessed. A subgroup analysis evaluated differences between male and female patients. RESULTS: The humeral retroversion angle ranged from 0.9° to 22.8°. The majority (81%) of the measurements were less than 15°. Mean retroversion angle (±SD) was 9.9° ± 5.8° (95% CI 8.4°-11.5°) with a mean percent error with respect to 15° of -34% ± 38 (95% CI -23 to -44). In the male subgroup (n = 27, range 3.8°-22.5°), the mean retroversion angle was 11.9° ± 5.4° (95% CI 9.8°-14.1°) with a mean percent error with respect to 15° of -21% ± 36 (95% CI -6 to -35). In the female subgroup (n = 27, range 0.9°-22.8°), mean retroversion angle was 8.0° ± 5.5° (95% CI 5.8°-10.1°) and the mean percent error with respect to 15° was -47% ± 36 (95% CI -32 to -61). The differences between the 2 gender groups were statistically significant (P = .006). CONCLUSION: Referencing the forearm using an extramedullary forearm referencing system to position the humeral stem in a desired retroversion is neither accurate nor precise. There is a nonnegligible tendency to achieve a lower retroversion than planned, and the error is more marked in females.


Subject(s)
Arthroplasty, Replacement, Shoulder , Forearm , Humerus , Tomography, X-Ray Computed , Humans , Female , Male , Arthroplasty, Replacement, Shoulder/methods , Aged , Forearm/surgery , Forearm/diagnostic imaging , Humerus/surgery , Humerus/diagnostic imaging , Middle Aged , Osteoarthritis/surgery , Osteoarthritis/diagnostic imaging , Shoulder Joint/surgery , Shoulder Joint/diagnostic imaging , Shoulder Prosthesis , Retrospective Studies , Aged, 80 and over , Rotator Cuff Tear Arthropathy/surgery , Rotator Cuff Tear Arthropathy/diagnostic imaging
3.
Antimicrob Agents Chemother ; 67(7): e0144822, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37358463

ABSTRACT

Rifampicin-resistant tuberculosis (RR-TB) involves treatment with many drugs that can prolong the QT interval; this risk may increase when multiple QT-prolonging drugs are used together. We assessed QT interval prolongation in children with RR-TB receiving one or more QT-prolonging drugs. Data were obtained from two prospective observational studies in Cape Town, South Africa. Electrocardiograms were performed before and after drug administration of clofazimine (CFZ), levofloxacin (LFX), moxifloxacin (MFX), bedaquiline (BDQ), and delamanid. The change in Fridericia-corrected QT (QTcF) was modeled. Drug and other covariate effects were quantified. A total of 88 children with a median (2.5th-to-97.5th range) age of 3.9 (0.5 to 15.7) years were included, of whom 55 (62.5%) were under 5 years of age. A QTcF interval of >450 ms was observed in 7 patient-visits: regimens were CFZ+MFX (n = 3), CFZ+BDQ+LFX (n = 2), CFZ alone (n = 1), and MFX alone (n = 1). There were no events with a QTcF interval of >500 ms. In a multivariate analysis, CFZ+MFX was associated with a 13.0-ms increase in change in QTcF (P < 0.001) and in maximum QTcF (P = 0.0166) compared to those when other MFX- or LFX-based regimens were used. In conclusion, we found a low risk of QTcF interval prolongation in children with RR-TB who received at least one QT-prolonging drug. Greater increases in maximum QTcF and ΔQTcF were observed when MFX and CFZ were used together. Future studies characterizing exposure-QTcF responses in children will be helpful to ensure safety with higher doses if required for effective treatment of RR-TB.


Subject(s)
Antitubercular Agents , Tuberculosis, Multidrug-Resistant , Humans , Child , Child, Preschool , Adolescent , Antitubercular Agents/adverse effects , Rifampin/therapeutic use , South Africa , Tuberculosis, Multidrug-Resistant/drug therapy , Clofazimine/therapeutic use , Levofloxacin/therapeutic use , Electrocardiography
4.
Clin Infect Dis ; 74(8): 1372-1381, 2022 04 28.
Article in English | MEDLINE | ID: mdl-34286843

ABSTRACT

BACKGROUND: Moxifloxacin is a recommended drug for rifampin-resistant tuberculosis (RR-TB) treatment, but there is limited pediatric pharmacokinetic and safety data, especially in young children. We characterize moxifloxacin population pharmacokinetics and QT interval prolongation and evaluate optimal dosing in children with RR-TB. METHODS: Pharmacokinetic data were pooled from 2 observational studies in South African children with RR-TB routinely treated with oral moxifloxacin once daily. The population pharmacokinetics and Fridericia-corrected QT (QTcF)-interval prolongation were characterized in NONMEM. Pharmacokinetic simulations were performed to predict expected exposure and optimal weight-banded dosing. RESULTS: Eighty-five children contributed pharmacokinetic data (median [range] age of 4.6 [0.8-15] years); 16 (19%) were aged <2 years, and 8 (9%) were living with human immunodeficiency virus (HIV). The median (range) moxifloxacin dose on pharmacokinetic sampling days was 11 mg/kg (6.1 to 17). Apparent clearance was 6.95 L/h for a typical 16-kg child. Stunting and HIV increased apparent clearance. Crushed or suspended tablets had faster absorption. The median (range) maximum change in QTcF after moxifloxacin administration was 16.3 (-27.7 to 61.3) ms. No child had QTcF ≥500 ms. The concentration-QTcF relationship was nonlinear, with a maximum drug effect (Emax) of 8.80 ms (interindividual variability = 9.75 ms). Clofazimine use increased Emax by 3.3-fold. Model-based simulations of moxifloxacin pharmacokinetics predicted that current dosing recommendations are too low in children. CONCLUSIONS: Moxifloxacin doses above 10-15 mg/kg are likely required in young children to match adult exposures but require further safety assessment, especially when coadministered with other QT-prolonging agents.


Subject(s)
HIV Infections , Tuberculosis, Multidrug-Resistant , Tuberculosis , Adult , Child , Child, Preschool , Electrocardiography , Fluoroquinolones/adverse effects , Humans , Moxifloxacin/adverse effects , Rifampin/adverse effects , Rifampin/pharmacokinetics , Tuberculosis/drug therapy , Tuberculosis, Multidrug-Resistant/drug therapy
5.
Exp Brain Res ; 240(4): 1159-1176, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35165776

ABSTRACT

An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance.


Subject(s)
Exoskeleton Device , Adaptation, Physiological , Exercise Test , Gait , Humans , Walking
6.
Echocardiography ; 37(12): 2144-2147, 2020 12.
Article in English | MEDLINE | ID: mdl-33084030

ABSTRACT

Diagnosis of anomalous origin of the right subclavian artery (AORSA) from the right pulmonary artery (RPA) is usually made using CT, MRI, or invasive angiography. We report a patient diagnosed using transthoracic echocardiography (TTE). A newborn girl prenatally known to have d-TGA presented with cyanosis sparing the right hemithorax and arm. Oxygen saturations on the right hand were persistently higher than on the right ear and other extremities. Repeat TTE using a modified echocardiographic imaging plane allowed for full visualization of the entire subclavian artery course, revealing AORSA from RPA. We discuss further the approach to echocardiographic diagnosis and surgical implications.


Subject(s)
Pulmonary Artery , Transposition of Great Vessels , Echocardiography , Female , Humans , Infant, Newborn , Pulmonary Artery/diagnostic imaging , Subclavian Artery/diagnostic imaging , Transposition of Great Vessels/diagnostic imaging , Transposition of Great Vessels/surgery
7.
Pediatr Cardiol ; 41(8): 1617-1622, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32715337

ABSTRACT

An established echocardiographic (echo) standard for assessing the newborn right ventricle (RV) for hypertrophy has not been thoroughly developed. This is partially due to the RV's complex architecture, which makes quantification of RV mass by echo difficult. Here, we retrospectively evaluate the thickness of the inferior RV wall (iRVWT) by echo in neonates and infants with normal cardiopulmonary physiology. Inferior RVWT was defined at the medial portion of the inferior wall of the RV at the mid-ventricular level, collected from a subxiphoid, short axis view. iRVWT was indexed to body surface area (BSA) to the 0.5 power and normalized to iLVWT to explore the best normalization method. Ninety-eight neonates and 32 infants were included in the final analysis. Mean age for neonates and infants was 2 days and 59 days, respectively. Mean ± SD for neonate and infant end-diastole iRVWT was 2.17 ± 0.35 mm and 1.79 ± 0.28 mm, respectively. There was no residual relationship between the index iRVWT and BSA (r = 0.03, p = NS). In the infant cohort, the iRVWT was significantly lower and iLVWT was significantly higher compared to neonate, consistent with known physiologic changes of RV and LV mass. Thus, iRVWT may serve as a reliable and accurate proxy for RV mass and the parameter warrants further evaluation.


Subject(s)
Echocardiography/methods , Heart Ventricles/diagnostic imaging , Hypertrophy, Right Ventricular/diagnostic imaging , Female , Heart Ventricles/pathology , Humans , Infant , Infant, Newborn , Male , Pilot Projects , Retrospective Studies
8.
N Engl J Med ; 385(7): 667-668, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34379935
9.
Pediatr Cardiol ; 40(2): 412-420, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30310940

ABSTRACT

Quantification of left ventricular (LV) mass by echocardiography has not been validated against the gold standard of cardiac magnetic resonance imaging (CMR) in the pediatric population. The purpose of this study was to compare LV mass by two-dimensional and conventional M-mode echocardiography versus CMR in children. Consecutive CMR studies were paired with echocardiograms and retrospectively analyzed in children age ≤ 16 years (3 days old to 16 years old). Studies performed > 3 months between modalities and single ventricle anatomy were excluded. Unindexed LV mass was calculated using M-mode, area-length (AL), and truncated ellipsoid (TE) methods via echocardiography, and compared to cine stack CMR images. There were 46 patients included in the study (both MRI and echocardiography). Good correlations were observed for LV mass measured by CMR and all echocardiographic methods: M-mode (R = 0.965), AL (R = 0.975), and TE (R = 0.975). There was a significant overestimation using TE echocardiography, by a mean of 10.5 g (95% confidence interval 5.7-15.2 g, p < 0.05). There was no significant over- or underestimation of LV mass observed by M-mode or AL echocardiographic measurements, with tight limits of agreement when compared to CMR (95% confidence interval - 5.2 to 4.4 g and - 1.5 to 6.7 g, respectively). Interobserver agreement was good for each of the echocardiographic measurements, but inferior with M-mode (ICC, 0.89) compared to two-dimensional methods (ICC, 0.97). Echocardiographic estimates of LV mass have good correlation with CMR in children. Performance comparison showed AL echocardiographic method provides the most accurate measurement of LV mass with the best reproducibility compared to other methods.


Subject(s)
Echocardiography/methods , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine/methods , Adolescent , Child , Child, Preschool , Female , Humans , Male , Reproducibility of Results , Retrospective Studies
10.
Pediatr Cardiol ; 39(5): 892-901, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29523923

ABSTRACT

Right atrial (RA) size is a prognostic indicator for heart failure and cardiovascular death in adults. Data regarding use of RA area (RAA) by two-dimensional echocardiography as a surrogate for RA size and allometric modeling to define appropriate indexing of the RAA are lacking. Our objective was to validate RAA as a reliable measure of RA size and to define normal reference values by transthoracic echocardiography (TTE) in a large population of healthy children and develop Z-scores using a validated allometric model for indexing RAA independent of age, sex, and body size. Agreement between RAA and volume by 2D, 3D TTE, and MRI was assessed. RAA not volume by 2D TTE is an excellent surrogate for RA size. RAA/BSA1 has an inverse correlation with BSA with a residual relationship to BSA (r = - 0.54, p < 0.0001). The allometric exponent (AE) derived for the entire cohort (0.85) also fails to eliminate the residual relationship. The entire cohort divided into two groups with a BSA cut-off of 1 m2 to provide the best-fit allometric model (r = 0). The AE by least square regression analysis for each group is 0.95 and 0.88 for BSA < 1 m2 and > 1 m2, respectively, and was validated against an independent sample. The mean indexed RAA ± SD for BSA ≤ 1 m2 and > 1 m2 is 9.7 ± 1.3 cm2 and 8.7 ± 1.3 cm2, respectively, and was used to derive Z-scores. RAA by 2D TTE is superior to 2D or 3D echocardiography-derived RA volume as a measure of RA size using CMR as the reference standard. RAA when indexed to BSA1, decreases as body size increases. The best-fit allometric modeling is used to create Z scores. RAA/BSA0.95 for BSA < 1 m2 and RAA/BSA0.88 for those with BSA > 1 m2 can be used to derive Z scores.


Subject(s)
Echocardiography/methods , Heart Atria/diagnostic imaging , Adolescent , Atrial Function/physiology , Child , Child, Preschool , Cohort Studies , Echocardiography, Three-Dimensional/methods , Female , Heart Atria/anatomy & histology , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Reference Values , Regression Analysis , Reproducibility of Results
14.
Pediatr Cardiol ; 37(6): 1028-36, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27041098

ABSTRACT

The method of cardiac magnetic resonance (CMR) three-dimensional (3D) image acquisition and post-processing which should be used to create optimal virtual models for 3D printing has not been studied systematically. Patients (n = 19) who had undergone CMR including both 3D balanced steady-state free precession (bSSFP) imaging and contrast-enhanced magnetic resonance angiography (MRA) were retrospectively identified. Post-processing for the creation of virtual 3D models involved using both myocardial (MS) and blood pool (BP) segmentation, resulting in four groups: Group 1-bSSFP/MS, Group 2-bSSFP/BP, Group 3-MRA/MS and Group 4-MRA/BP. The models created were assessed by two raters for overall quality (1-poor; 2-good; 3-excellent) and ability to identify predefined vessels (1-5: superior vena cava, inferior vena cava, main pulmonary artery, ascending aorta and at least one pulmonary vein). A total of 76 virtual models were created from 19 patient CMR datasets. The mean overall quality scores for Raters 1/2 were 1.63 ± 0.50/1.26 ± 0.45 for Group 1, 2.12 ± 0.50/2.26 ± 0.73 for Group 2, 1.74 ± 0.56/1.53 ± 0.61 for Group 3 and 2.26 ± 0.65/2.68 ± 0.48 for Group 4. The numbers of identified vessels for Raters 1/2 were 4.11 ± 1.32/4.05 ± 1.31 for Group 1, 4.90 ± 0.46/4.95 ± 0.23 for Group 2, 4.32 ± 1.00/4.47 ± 0.84 for Group 3 and 4.74 ± 0.56/4.63 ± 0.49 for Group 4. Models created using BP segmentation (Groups 2 and 4) received significantly higher ratings than those created using MS for both overall quality and number of vessels visualized (p < 0.05), regardless of the acquisition technique. There were no significant differences between Groups 1 and 3. The ratings for Raters 1 and 2 had good correlation for overall quality (ICC = 0.63) and excellent correlation for the total number of vessels visualized (ICC = 0.77). The intra-rater reliability was good for Rater A (ICC = 0.65). Three models were successfully printed on desktop 3D printers with good quality and accurate representation of the virtual 3D models. We recommend using BP segmentation with either MRA or bSSFP source datasets to create virtual 3D models for 3D printing. Desktop 3D printers can offer good quality printed models with accurate representation of anatomic detail.


Subject(s)
Heart , Humans , Imaging, Three-Dimensional , Magnetic Resonance Angiography , Printing, Three-Dimensional , Reproducibility of Results
15.
Pediatr Cardiol ; 37(4): 696-703, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26717912

ABSTRACT

Cardiac magnetic resonance (CMR) assesses myocardial involvement in myocarditis (MYO). Current techniques are qualitative, subjective, and prone to interpretation error. Feature tracking (FT) analyzes myocardial strain using CMR and has not been examined in MYO. We hypothesize that regional left ventricular (LV) strain is abnormal in MYO. Regional strain by FT was compared to late gadolinium enhancement (LGE) and troponin leak as measures of myocardial involvement. This single-center, retrospective CMR study reviewed patients with clinical MYO and structurally normal hearts who underwent CMR at our institution. Young adults with normal cardiac anatomy, function, and absent LGE served as controls. MYO patients with documented troponin leak and normal global ejection fraction (EF > 50 %) were included in comparison. FT determined regional myocardial peak systolic strain (pkS) in longitudinal and circumferential distributions. T tests compared strain values between cases and controls. Receiver operating characteristic curves determined pkS values with highest sensitivity and specificity for concurrent troponin leak and LGE. FT was performed on 57 patients: 37 MYO and 20 controls. Twenty-eight cases with normal EF, and 20 control patients were included in final analysis. Nearly all cases with normal function demonstrated abnormal regional pkS (27/28, 96 %). Cases had significantly diminished pkS when compared to controls in all regions except the longitudinal 2C distribution. FT-derived longitudinal and circumferential pkS is sensitive and specific in identifying myocardial involvement, namely the presence of troponin leak and LGE. FT may be a useful adjunctive, objective measure of myocardial involvement in patients with MYO and normal LV function.


Subject(s)
Heart Ventricles/physiopathology , Myocarditis/diagnostic imaging , Myocardium/pathology , Troponin/blood , Ventricular Function, Left , Adolescent , Case-Control Studies , Contrast Media/chemistry , Echocardiography , Female , Gadolinium DTPA/chemistry , Humans , Logistic Models , Magnetic Resonance Imaging, Cine , Male , Retrospective Studies , Sensitivity and Specificity , Systole , Young Adult
16.
Pediatr Cardiol ; 37(1): 90-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26254102

ABSTRACT

Our goal was to construct three-dimensional (3D) virtual models to allow simultaneous visualization of the ventricles, ventricular septal defect (VSD) and great arteries in patients with complex intracardiac anatomy to aid in surgical planning. We also sought to correlate measurements from the source cardiac magnetic resonance (CMR) image dataset and the 3D model. Complicated ventriculo-arterial relationships in patients with complex conotruncal malformations make preoperative assessment of possible repair pathways difficult. Patients were chosen with double outlet right ventricle for the complexity of intracardiac anatomy and potential for better delineation of anatomic spatial relationships. Virtual 3D models were generated from CMR 3D datasets. Measurements were made on the source CMR as well as the 3D model for the following structures: aortic diameter in orthogonal planes, VSD diameter in orthogonal planes and long axis of right ventricle. A total of six patients were identified for inclusion. The path from the ventricles to each respective outflow tract and the location of the VSD with respect to each great vessel was visualized clearly in all patients. Measurements on the virtual model showed excellent correlation with the source CMR when all measurements were included by Pearson coefficient, r = 0.99 as well as for each individual structure. Construction of virtual 3D models in patients with complex conotruncal defects from 3D CMR datasets allows for simultaneous visualization of anatomic relationships relevant for surgical repair. The availability of these models may allow for a more informed preoperative evaluation in these patients.


Subject(s)
Double Outlet Right Ventricle/diagnosis , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adolescent , Adult , Child , Child, Preschool , Computer Simulation , Double Outlet Right Ventricle/complications , Heart , Humans , Retrospective Studies
17.
J Cardiovasc Magn Reson ; 17: 39, 2015 May 25.
Article in English | MEDLINE | ID: mdl-26004027

ABSTRACT

BACKGROUND: Open cardiovascular magnetic resonance (CMR) scanners offer the potential for imaging patients with claustrophobia or large body size, but at a lower 1.0 Tesla magnetic field. This study aimed to evaluate the efficacy of open CMR for evaluation of pediatric and congenital heart disease. METHODS: This retrospective, cross-sectional study included all patients ≤18 years old or with congenital heart disease who underwent CMR on an open 1.0 Tesla scanner at two centers from 2012-2014. Indications for CMR and clinical questions were extracted from the medical record. Studies were qualitatively graded for image quality and diagnostic utility. In a subset of 25 patients, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were compared to size- and diagnosis-matched patients with CMR on a 1.5 Tesla scanner. RESULTS: A total of 65 patients (median 17.3 years old, 60% male) were included. Congenital heart disease was present in 32 (50%), with tetralogy of Fallot and bicuspid aortic valve the most common diagnoses. Open CMR was used due to scheduling/equipment issues in 51 (80%), claustrophobia in 7 (11%), and patient size in 3 (5%); 4 patients with claustrophobia had failed CMR on a different scanner, but completed the study on open CMR without sedation. All patients had good or excellent image quality on black blood, phase contrast, magnetic resonance angiography, and late gadolinium enhancement imaging. There was below average image quality in 3/63 (5%) patients with cine images, and 4/15 (27%) patients with coronary artery imaging. SNR and CNR were decreased in cine and magnetic resonance angiography images compared to 1.5 Tesla. The clinical question was answered adequately in all but 2 patients; 1 patient with a Fontan had artifact from an embolization coil limiting RV volume analysis, and in 1 patient the right coronary artery origin was not well seen. CONCLUSIONS: Open 1.0 Tesla scanners can effectively evaluate pediatric and congenital heart disease, including patients with claustrophobia and larger body size. Despite minor artifacts and differences in SNR and CNR, the majority of clinical questions can be answered adequately, with some limitations with coronary artery imaging. Further evaluation is necessary to optimize protocols and image quality.


Subject(s)
Coronary Vessels/pathology , Heart Defects, Congenital/pathology , Magnetic Resonance Angiography/instrumentation , Magnetic Resonance Imaging, Cine/instrumentation , Myocardium/pathology , Adolescent , Adult , Age Factors , Artifacts , Body Size , Child , Child, Preschool , Cross-Sectional Studies , Equipment Design , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Angiography/adverse effects , Magnetic Resonance Imaging, Cine/adverse effects , Male , Michigan , Middle Aged , New York , Observer Variation , Phobic Disorders/etiology , Predictive Value of Tests , Reproducibility of Results , Retrospective Studies , Signal-To-Noise Ratio , Young Adult
19.
Pediatr Cardiol ; 36(5): 950-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25617227

ABSTRACT

The presence of myocardial late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR) imaging in concert with electrocardiography and elevated biomarkers helps support the diagnosis of acute myocarditis. Two-dimensional echocardiography is limited to global and qualitative regional function assessment and may not contribute to the diagnosis, especially in the presence of normal LV systolic function. Two-dimensional speckle-tracking (2D-STE)-derived segmental peak systolic (pkS) longitudinal strain (LS) may identify segmental myocardial involvement in myocarditis. We sought to identify an association between segmental pkS, LGE, and troponin levels in patients with myocarditis. Retrospective analysis of myocardial segmental function by 2D-STE segmental strain was compared to the presence of LGE and admission peak troponin levels in patients with acute myocarditis and preserved global LV systolic function. American Heart Association 17-segment model was used for comparison between imaging modalities. Global function was assessed by m-mode-derived shortening fraction (SF). Descriptive statistics and regression analysis were utilized. Forty-four CMRs performed to evaluate for myocarditis were identified. Of the 44, 10 patients, median age 17.5 years (14-18.5 years) and median SF 35 % (28-44 %), had paired CMR and 2D-STE data for analysis, and 161/170 segments could be analyzed by both methods for comparison. PkS LS was decreased in 51 % of segments that were positive for LGE with average pkS of -14.7 %. Segmental pkS LS abnormalities were present in all but one patient who had abnormal pkS circumferential strain. Global pkS LS was decreased in patients with myocarditis. There is a moderate correlation between decreased pkS LS and the presence of LGE by CMR, 2D-STE for myocardial involvement in acute myocarditis can serve as an useful noninvasive adjunct to the existing tests used for the diagnosis of acute myocarditis and might have a role in prognostication.


Subject(s)
Echocardiography/methods , Magnetic Resonance Imaging, Cine/methods , Myocarditis/diagnosis , Myocardium/pathology , Ventricular Function, Left , Adolescent , Contrast Media , Female , Gadolinium DTPA , Humans , Image Interpretation, Computer-Assisted/methods , Male , Myocarditis/diagnostic imaging , Myocarditis/pathology , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL