ABSTRACT
KEY POINTS: Increased large artery stiffness is a hallmark of arterial dysfunction with advancing age and is also present in other disease conditions such as diabetes. Increased large artery stiffness is correlated with resistance artery dysfunction in humans. Using a mouse model of altered arterial elastin content, this is the first study to examine the cause-and-effect relationship between large artery stiffness and peripheral resistance artery function. Our results indicate that mice with genetically greater large artery stiffness have impaired cerebral artery endothelial function, but generally preserved skeletal muscle feed artery endothelial function. The mechanisms for impaired cerebral artery endothelial function are reduced nitric oxide bioavailability and increased oxidative stress. These findings suggest that interventions that target large artery stiffness may be important to reduce disease risk associated with cerebral artery dysfunction in conditions such as advancing age. ABSTRACT: Advancing age as well as diseases such as diabetes are characterized by both increased large artery stiffness and impaired peripheral artery function. It has been hypothesized that greater large artery stiffness causes peripheral artery dysfunction; however, a cause-and-effect relationship has not previously been established. We used elastin heterozygote mice (Eln(+/-) ) as a model of increased large artery stiffness without co-morbidities unrelated to the large artery properties. Aortic stiffness, measured by pulse wave velocity, was â¼35% greater in Eln(+/-) mice than in wild-type (Eln(+/+) ) mice (P = 0.04). Endothelium-dependent dilatation (EDD), assessed by the maximal dilatation to acetylcholine, was â¼40% lower in Eln(+/-) than Eln(+/+) mice in the middle cerebral artery (MCA, P < 0.001), but was similar between groups in the gastrocnemius feed arteries (GFA, P = 0.79). In the MCA, EDD did not differ between groups after incubation with the nitric oxide (NO) synthase inhibitor N(ω) -nitro-l-arginine methyl ester (P > 0.05), indicating that lower NO bioavailability contributed to the impaired EDD in Eln(+/-) mice. Superoxide production and content of the oxidative stress marker nitrotyrosine was higher in MCAs from Eln(+/-) compared with Eln(+/+) mice (P < 0.05). In the MCA, after incubation with the superoxide scavenger TEMPOL, maximal EDD improved by â¼65% in Eln(+/-) (P = 0.002), but was unchanged in Eln(+/+) mice (P = 0.17). These results indicate that greater large artery stiffness has a more profound effect on endothelial function in cerebral arteries compared with skeletal muscle feed arteries. Greater large artery stiffness can cause cerebral artery endothelial dysfunction by reducing NO bioavailability and increasing oxidative stress.
Subject(s)
Cerebral Arteries/physiopathology , Endothelium, Vascular/physiopathology , Muscle, Skeletal/blood supply , Vascular Stiffness/physiology , Animals , Cerebral Arteries/drug effects , Disease Models, Animal , Elastin/genetics , Elastin/metabolism , Endothelium, Vascular/drug effects , Enzyme Inhibitors/pharmacology , Indomethacin/pharmacology , Mice , Mice, Knockout , NG-Nitroarginine Methyl Ester/pharmacology , Vascular Resistance/drug effects , Vascular Resistance/physiology , Vascular Stiffness/drug effects , Vasodilation/drug effects , Vasodilation/physiologyABSTRACT
Atherogenic remodeling often occurs at arterial locations with disturbed blood flow (i.e., low or oscillatory) and both aging and western diet (WD) increase the likelihood for pro-atherogenic remodeling. However, it is unknown if old age and/or a WD modify the pro-atherogenic response to disturbed blood flow. We induced disturbed blood flow by partial carotid ligation (PCL) of the left carotid artery in young and old, normal chow (NC) or WD fed male B6D2F1 mice. Three weeks post-PCL, ligated carotid arteries had greater intima media thickness, neointima formation, and macrophage content compared with un-ligated arteries. WD led to greater remodeling and macrophage content in the ligated artery compared with NC mice, but these outcomes were similar between young and old mice. In contrast, nitrotyrosine content, a marker of oxidative stress, did not differ between WD and NC fed mice, but was greater in old compared with young mice in both ligated and un-ligated carotid arteries. In primary vascular smooth muscle cells, aging reduced proliferation, whereas conditioned media from fatty acid treated endothelial cells increased proliferation. Taken together, these findings suggest that the remodeling and pro-inflammatory response to disturbed blood flow is increased by WD, but is not increased by aging.
Subject(s)
Aging/physiology , Atherosclerosis/physiopathology , Carotid Arteries/physiopathology , Diet, Western/adverse effects , Neointima/physiopathology , Regional Blood Flow/physiology , Animals , Carotid Intima-Media Thickness , Cell Proliferation/physiology , Endothelial Cells/physiology , Fatty Acids/adverse effects , Male , Mice , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/physiology , Oxidative Stress/physiology , Tyrosine/analogs & derivatives , Tyrosine/analysisABSTRACT
Endothelial dysfunction occurs in conduit and cerebral resistance arteries with advancing age. Lifelong caloric restriction (CR) can prevent the onset of age-related dysfunction in many tissues, but its effects on cerebral resistance artery function, as compared with conduit artery function, have not been determined. We measured endothelium-dependent dilation (EDD) in the carotid artery and middle cerebral artery (MCA) from young (5-7 months), old ad libitum fed (AL, 29-32 months), and old lifelong CR (CR, 40 % CR, 29-32 months) B6D2F1 mice. Compared with young, EDD for old AL was 24 % lower in the carotid and 47 % lower in the MCA (p < 0.05). For old CR, EDD was not different from young in the carotid artery (p > 0.05), but was 25 % lower than young in the MCA (p < 0.05). EDD was not different between groups after NO synthase inhibition with N(ω)-nitro-L-arginine methyl ester in the carotid artery or MCA. Superoxide production by the carotid artery and MCA was greater in old AL compared with young and old CR (p < 0.05). In the carotid, incubation with the superoxide scavenger TEMPOL improved EDD for old AL (p > 0.05), with no effect in young or old CR (p > 0.05). In the MCA, incubation with TEMPOL or the NADPH oxidase inhibitor apocynin augmented EDD in old AL (p < 0.05), but reduced EDD in young and old CR (p < 0.05). Thus, age-related endothelial dysfunction is prevented by lifelong CR completely in conduit arteries, but only partially in cerebral resistance arteries. These benefits of lifelong CR on EDD result from lower oxidative stress and greater NO bioavailability.