Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 146
Filter
Add more filters

Publication year range
1.
Cell ; 184(11): 2860-2877.e22, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33964210

ABSTRACT

Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.


Subject(s)
Embryo, Mammalian/metabolism , Embryonic Development/genetics , Aneuploidy , Animals , Cattle , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Centrosome/metabolism , Chromosome Segregation/physiology , Chromosomes/metabolism , Fertilization/genetics , Humans , Male , Microtubules/metabolism , Mitosis , Oocytes/metabolism , Spermatozoa/metabolism , Zygote/metabolism
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33443157

ABSTRACT

The sex-determining region on the Y chromosome (SRY) is thought to be the central genetic element of male sex development in mammals. Pathogenic modifications within the SRY gene are associated with a male-to-female sex reversal syndrome in humans and other mammalian species, including rabbits and mice. However, the underlying mechanisms are largely unknown. To understand the biological function of the SRY gene, a site-directed mutational analysis is required to investigate associated phenotypic changes at the molecular, cellular, and morphological level. Here, we successfully generated a knockout of the porcine SRY gene by microinjection of two CRISPR-Cas ribonucleoproteins, targeting the centrally located "high mobility group" (HMG), followed by a frameshift mutation of the downstream SRY sequence. This resulted in the development of genetically male (XY) pigs with complete external and internal female genitalia, which, however, were significantly smaller than in 9-mo-old age-matched control females. Quantitative digital PCR analysis revealed a duplication of the SRY locus in Landrace pigs similar to the known palindromic duplication in Duroc breeds. Our study demonstrates the central role of the HMG domain in the SRY gene in male porcine sex determination. This proof-of-principle study could assist in solving the problem of sex preference in agriculture to improve animal welfare. Moreover, it establishes a large animal model that is more comparable to humans with regard to genetics, physiology, and anatomy, which is pivotal for longitudinal studies to unravel mammalian sex determination and relevant for the development of new interventions for human sex development disorders.


Subject(s)
Sex Determination Processes/genetics , Sex-Determining Region Y Protein/genetics , Sex-Determining Region Y Protein/metabolism , Amino Acid Sequence/genetics , Animals , DNA-Binding Proteins/genetics , Disorders of Sex Development/genetics , Frameshift Mutation/genetics , Genes, sry/genetics , HMG-Box Domains/genetics , Male , Mutation/genetics , Nuclear Proteins/genetics , Proof of Concept Study , Protein Domains/genetics , Swine/genetics , Transcription Factors/genetics , Y Chromosome/genetics
3.
Xenotransplantation ; 30(4): e12804, 2023.
Article in English | MEDLINE | ID: mdl-37148126

ABSTRACT

BACKGROUND: Pig-derived tissues could overcome the shortage of human donor organs in transplantation. However, the glycans with terminal α-Gal and Neu5Gc, which are synthesized by enzymes, encoded by the genes GGTA1 and CMAH, are known to play a major role in immunogenicity of porcine tissue, ultimately leading to xenograft rejection. METHODS: The N-glycome and glycosphingolipidome of native and decellularized porcine pericardia from wildtype (WT), GGTA1-KO and GGTA1/CMAH-KO pigs were analyzed by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection. RESULTS: We identified biantennary and core-fucosylated N-glycans terminating with immunogenic α-Gal- and α-Gal-/Neu5Gc-epitopes on pericardium of WT pigs that were absent in GGTA1 and GGTA1/CMAH-KO pigs, respectively. Levels of N-glycans terminating with galactose bound in ß(1-4)-linkage to N-acetylglucosamine and their derivatives elongated by Neu5Ac were increased in both KO groups. N-glycans capped with Neu5Gc were increased in GGTA1-KO pigs compared to WT, but were not detected in GGTA1/CMAH-KO pigs. Similarly, the ganglioside Neu5Gc-GM3 was found in WT and GGTA1-KO but not in GGTA1/CMAH-KO pigs. The applied detergent based decellularization efficiently removed GSL glycans. CONCLUSION: Genetic deletion of GGTA1 or GGTA1/CMAH removes specific epitopes providing a more human-like glycosylation pattern, but at the same time changes distribution and levels of other porcine glycans that are potentially immunogenic.


Subject(s)
Galactosyltransferases , Polysaccharides , Animals , Swine , Humans , Animals, Genetically Modified , Transplantation, Heterologous/methods , Galactosyltransferases/genetics , Gene Knockout Techniques , Epitopes
4.
BMC Biol ; 20(1): 14, 2022 01 14.
Article in English | MEDLINE | ID: mdl-35027054

ABSTRACT

BACKGROUND: Infectious diseases of farmed and wild animals pose a recurrent threat to food security and human health. The macrophage, a key component of the innate immune system, is the first line of defence against many infectious agents and plays a major role in shaping the adaptive immune response. However, this phagocyte is a target and host for many pathogens. Understanding the molecular basis of interactions between macrophages and pathogens is therefore crucial for the development of effective strategies to combat important infectious diseases. RESULTS: We explored how porcine pluripotent stem cells (PSCs) can provide a limitless in vitro supply of genetically and experimentally tractable macrophages. Porcine PSC-derived macrophages (PSCdMs) exhibited molecular and functional characteristics of ex vivo primary macrophages and were productively infected by pig pathogens, including porcine reproductive and respiratory syndrome virus (PRRSV) and African swine fever virus (ASFV), two of the most economically important and devastating viruses in pig farming. Moreover, porcine PSCdMs were readily amenable to genetic modification by CRISPR/Cas9 gene editing applied either in parental stem cells or directly in the macrophages by lentiviral vector transduction. CONCLUSIONS: We show that porcine PSCdMs exhibit key macrophage characteristics, including infection by a range of commercially relevant pig pathogens. In addition, genetic engineering of PSCs and PSCdMs affords new opportunities for functional analysis of macrophage biology in an important livestock species. PSCs and differentiated derivatives should therefore represent a useful and ethical experimental platform to investigate the genetic and molecular basis of host-pathogen interactions in pigs, and also have wider applications in livestock.


Subject(s)
African Swine Fever Virus , Communicable Diseases , African Swine Fever Virus/genetics , Animals , Host-Pathogen Interactions/genetics , Macrophages , Stem Cells , Swine
5.
Xenotransplantation ; 28(1): e12646, 2021 01.
Article in English | MEDLINE | ID: mdl-32945050

ABSTRACT

BACKGROUND: The present study reports the development of a sensitive dot blot protocol for determining the level of preformed antibodies against porcine heart valve tissue derived from wild-type (WT) and α-Gal-KO (GGTA1-KO) pigs in human sera. METHODS: The assay uses decellularized and solubilized heart valve tissue; antibody binding found in this dot blot assay could be correlated with antibody titers of preformed anti-α-Gal and anti-Neu5Gc antibodies detected by a sensitive ELISA. RESULTS: The ultimate protocol had an inter-assay variance of 9.5% and an intra-assay variance of 9.2%, showing that the test is reliable and highly reproducible. With the aid of this dot blot assay, we found significant variation with regard to antibody contents among twelve human sera. Binding of preformed antibodies to WT tissue was significantly higher than to GGTA1-KO tissue. CONCLUSIONS: The dot blot assay described herein could be a valuable tool to measure preformed antibody levels in human sera against unknown epitopes on decellularized tissue prior to implantation. Ultimately, this prescreening may allow a matching of the porcine xenograft with the respective human recipients in demand and thus may become an important tool for graft long-term survival similar to current allotransplantation settings.


Subject(s)
Bioprosthesis , Animals , Epitopes , Extracellular Matrix , Heart Valves , Humans , Swine , Transplantation, Heterologous
6.
J Cell Mol Med ; 24(9): 5070-5081, 2020 05.
Article in English | MEDLINE | ID: mdl-32212307

ABSTRACT

Xenotransplantation of pancreatic islets offers a promising alternative to overcome the shortage of allogeneic donors. Despite significant advances, either immune rejection or oxygen supply in immune protected encapsulated islets remains major bottlenecks for clinical application. To decrease xenogeneic immune responses, we generated tissue engineered swine leucocyte antigen (SLA)-silenced islet cell clusters (ICC). Single-cell suspensions from pancreatic islets were generated by enzymatic digestion of porcine ICCs. Cells were silenced for SLA class I and class II by lentiviral vectors encoding for short hairpin RNAs targeting beta2-microglobulin or class II transactivator, respectively. SLA-silenced ICCs-derived cells were then used to form new ICCs in stirred bioreactors in the presence of collagen VI. SLA class I silencing was designed to reach a level of up to 89% and class II by up to 81% on ICCs-derived cells. Xenogeneic T cell immune responses, NK cell and antibody-mediated cellular-dependent immune responses were significantly decreased in SLA-silenced cells. In stirred bioreactors, tissue engineered islets showed the typical 3D structure and insulin production. These data show the feasibility to generate low immunogenic porcine ICCs after single-cell engineering and post-transduction islet reassembling that might serve as an alternative to allogeneic pancreatic islet cell transplantation.


Subject(s)
Histocompatibility Antigens Class I/immunology , Islets of Langerhans Transplantation/methods , Islets of Langerhans/metabolism , Animals , Antibodies/chemistry , Antibody Formation , Cell Survival , Cells, Cultured , Gene Silencing , Genetic Engineering/methods , Immunity, Cellular , Insulin/metabolism , Killer Cells, Natural/metabolism , Neoplasm Transplantation , Pancreas/metabolism , RNA Interference , Swine , T-Lymphocytes/metabolism , Transcriptional Activation , Transplantation, Heterologous
7.
Am J Transplant ; 20(4): 988-998, 2020 04.
Article in English | MEDLINE | ID: mdl-31733031

ABSTRACT

Porcine xenografts lacking swine leukocyte antigen (SLA) class I are thought to be protected from human T cell responses. We have previously shown that SLA class I deficiency can be achieved in pigs by CRISPR/Cas9-mediated deletion of ß2 -microglobulin (B2M). Here, we characterized another line of genetically modified pigs in which targeting of the B2M locus did not result in complete absence of B2M and SLA class I but rather in significantly reduced expression levels of both molecules. Residual SLA class I was functionally inert, because no proper differentiation of the CD8+ T cell subset was observed in B2Mlow pigs. Cells from B2Mlow pigs were less capable in triggering proliferation of human peripheral blood mononuclear cells in vitro, which was mainly due to the nonresponsiveness of CD8+ T cells. Nevertheless, cytotoxic effector cells developing from unaffected cell populations (eg, CD4+ T cells, natural killer cells) lysed targets from both SLA class I+ wildtype and SLA class Ilow pigs with similar efficiency. These data indicate that the absence of SLA class I is an effective approach to prevent the activation of human CD8+ T cells during the induction phase of an anti-xenograft response. However, cytotoxic activity of cells during the effector phase cannot be controlled by this approach.


Subject(s)
CD8-Positive T-Lymphocytes , Leukocytes, Mononuclear , Animals , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class II , Humans , Immunity , Phenotype , Swine
8.
Xenotransplantation ; 26(6): e12525, 2019 11.
Article in English | MEDLINE | ID: mdl-31119817

ABSTRACT

BACKGROUND: Despite major improvements in pig-to-primate xenotransplantation, long-term survival of xenografts is still challenging. The major histocompatibility complex (MHC) class I, which is crucial in cellular immune response, is an important xenoantigen. Abrogating MHC class I expression on xenografts might be beneficial for extending graft survival beyond current limits. METHODS: In this study, we employed the CRISPR/Cas9 system to target exon 2 of the porcine beta-2-microglobulin (B2M) gene to abrogate SLA class I expression on porcine cells. B2M-KO cells served as donor cells for somatic cell nuclear transfer, and cloned embryos were transferred to three recipient sows. The offspring were genotyped for mutations at the B2M locus, and blood samples were analyzed via flow cytometry for the absence of SLA class I molecules. RESULTS: Pregnancies were successfully established and led to the birth of seven viable piglets. Genomic sequencing proved that all piglets carried biallelic modifications at the B2M locus leading to a frameshift, a premature stop codon, and ultimately a functional knockout. However, survival times of these animals did not exceed 4 weeks due to unexpected disease processes. CONCLUSION: Here, we demonstrate the feasibility of generating SLA class I knockout pigs by targeting the porcine beta-2-microglobulin gene using the CRISPR/Cas9 system. Additionally, our findings indicate for the first time that this genetic modification might have a negative impact on the viability of the animals. These issues need to be solved to unveil the real value for xenotransplantation in the future.


Subject(s)
Galactosyltransferases/genetics , Histocompatibility Antigens Class I/genetics , Transplantation, Heterologous , beta 2-Microglobulin/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Female , Gene Knockout Techniques/methods , Nuclear Transfer Techniques , Pregnancy , Swine , Transplantation, Heterologous/methods
9.
Xenotransplantation ; 25(4): e12429, 2018 07.
Article in English | MEDLINE | ID: mdl-30264886

ABSTRACT

BACKGROUND: Porcine induced pluripotent stem cells (piPSCs) offer an alternative strategy in xenotransplantation (XTx). As human endogenous retroviruses (HERV), particularly HERV-K, are highly expressed in natural human stem cells, we compared the expression of porcine endogenous retroviruses (PERV) and retrotransposon LINE-1 (L1) open reading frames 1 and 2 (pORF1 and pORF2) in different piPSC-like cell lines with their progenitors (porcine fetal fibroblasts, pFF). METHODS: Cells reprogrammed via Sleeping Beauty-transposed transcription factors were cultured and analyzed on a custom-designed microarray representing the reference pig genome. Data were complemented by qRT-PCR and reverse transcriptase (RT) assay. RESULTS: The expression profiles revealed that 8515 of 26 967 targets were differentially expressed. A total of 4443 targets showed log2 expression ratio >1, and 4072 targets showed log2 expression ratio less than -1 with 0.05 P-value threshold. Approximately ten percent of the targets showed highly significant expression ratios with log2 ≥4 or ≤-4. Besides this general switch in cellular gene expression that was accompanied by an altered morphology, expression of both PERV and L1 pORF1/pORF2 was significantly enhanced. piPSC-like cells revealed a 10-fold to 100-fold higher transcription of the viral PERV-A and PERV-B envelope genes (env), viral protease/polymerase (prt/pol), and L1 elements. No functional retrovirus could be detected under these conditions. CONCLUSION: Epigenetic reprogramming has functional impact on retrotransposons. Thus, the induction of pig-derived pluripotent cells influences their PERV expression profile. Data emphasize the necessity to focus on animals, which show non-functional endogenous viral background to ensure virological safety.


Subject(s)
Endogenous Retroviruses , Gene Expression/physiology , Induced Pluripotent Stem Cells , Transplantation, Heterologous , Animals , Cells, Cultured , Humans , Swine
10.
Xenotransplantation ; 25(5): e12387, 2018 09.
Article in English | MEDLINE | ID: mdl-29446180

ABSTRACT

BACKGROUND: The programmed cell death-1 (PD-1, CD279)/PD-Ligand1 (PD-L1, CD274) receptor system is crucial for controlling the balance between immune activation and induction of tolerance via generation of inhibitory signals. Expression of PD-L1 is associated with reduced immunogenicity and renders cells and tissues to an immune-privileged/tolerogenic state. METHODS: To apply this concept for clinical xenotransplantation, we generated human (h)PD-L1 transgenic pigs and characterized expression and biological function of the transgene at the cellular level. RESULTS: The hPD-L1 was detected in kidney, heart, and pancreas. In addition, peripheral blood mononuclear cells (PBMC), cultured fibroblasts, and endothelial cells were hPD-L1 positive (hPD-L1+ ). The hPD-L1 levels were increased by the treatment of transgenic cells with human cytokines (eg, TNF-α), suggesting a regulatable mode of transgene expression. Compared to cells from wild-type pigs, hPD-L1+ PBMC had a significantly reduced capacity to stimulate proliferation of human CD4+ T cells. Moreover, fibroblasts from hPD-L1 transgenic pigs were partially protected from cell-mediated lysis by human cytotoxic effector cells. CONCLUSIONS: These data indicate a low immunogenic, immune-protected status of cells from hPD-L1 transgenic pigs. The integration of the hPD-L1 concept into existing multi-transgenic pigs is promising to achieve long-term survival of porcine xenografts in non-human primate recipients.


Subject(s)
Animals, Genetically Modified/immunology , B7-H1 Antigen/metabolism , Heterografts/immunology , Leukocytes, Mononuclear/immunology , T-Lymphocytes/immunology , Animals , Antibody Formation/immunology , Cell Proliferation/physiology , Cytotoxicity, Immunologic/immunology , Endothelial Cells/immunology , Humans , Immune Tolerance/immunology , Lymphocyte Activation/immunology , Swine , Transplantation, Heterologous
11.
Basic Res Cardiol ; 111(4): 39, 2016 07.
Article in English | MEDLINE | ID: mdl-27154491

ABSTRACT

Pre-clinical and clinical data have unequivocally demonstrated the usefulness of decellularized heart valve (HV) matrices implanted for HV replacement therapy. However, human donor valves applicable for decellularization are in short supply, which prompts the search for suitable alternatives, such as porcine grafts. Since decellularization might be insufficient to remove all xenoantigens, we analysed the interaction of human preformed antibodies with decellularized porcine HV in vitro to assess potential immune reactions upon implantation. Detergent-decellularized pulmonary HV from German Landrace wild-type (wt) or α1,3-galactosyltransferase knockout (GGTA1-KO) pigs were investigated by inhibition ELISA and GSL I-B4 staining to localize and quantify matrix-bound αGal epitopes, which represent the most prominent xenoantigen. Additionally, preformed human xenoantibodies were affinity purified by perfusing porcine kidneys. Binding of purified human antibodies to decellularized HV was investigated by inhibition ELISA. Furthermore, binding of human plasma proteins to decellularized matrices was determined by western blot. Decellularized human pulmonary artery served as controls. Decellularization of wt HV led to a reduction of αGal epitopes by 70 %. Residual epitopes were associated with the subendothelial extracellular matrix. As expected, no αGal epitopes were found on decellularized GGTA1-KO matrix. The strongest binding of preformed human anti-pig antibodies was found on wt matrices, whereas GGTA1-KO matrices bound similar or even fewer xenoantibodies than human controls. These results demonstrate the suitability of GGTA1-KO pigs as donors for decellularized heart valves for human patients. Besides the presence of αGal antibodies on decellularized heart valves, no further preformed xenoantibodies against porcine matrix were detected in tested human sera.


Subject(s)
Antibodies, Heterophile/immunology , Galactosyltransferases/deficiency , Heart Valve Prosthesis , Heart Valves/immunology , Heterografts/immunology , Animals , Antigens, Heterophile/immunology , Bioprosthesis , Blotting, Western , Fluorescent Antibody Technique , Gene Knockout Techniques , Humans , Swine
12.
Mol Reprod Dev ; 83(9): 802-814, 2016 09.
Article in English | MEDLINE | ID: mdl-27567027

ABSTRACT

Epigenetic changes are critical for the acquisition of developmental potential by oocytes and embryos, yet these changes may be sensitive to maternal ageing. Here, we investigated the impact of maternal ageing on DNA methylation and mRNA expression in a panel of eight genes that are critically involved in oocyte and embryo development. Bovine oocytes were collected from donors of three different age categories-prepubertal (9-12 months old), mature (3-7 years old), and aged (8-11 years old)-and were analyzed for gene-specific DNA methylation (bTERF2, bREC8, bBCL-XL, bPISD, bBUB1, bDNMT3Lo, bH19, and bSNRPN) and mRNA expression (bTERF2, bBCL-XL, bPISD, and bBUB1). A total of 1,044 alleles with 88,740 CpGs were amplified and sequenced from 362 bovine oocytes. Most of the detected molecules were either fully methylated or completely unmethylated. Only 9 out of 1,044 alleles (<1%) were abnormally methylated (>50% of CpGs with an aberrant methylation status), and seven of the nine abnormally methylated alleles were within only two candidate genes (bDNMT3Lo and bH19). No significant differences were detected with regard to mRNA expression between oocytes from the three groups of donors. These results suggest that genes predominantly important for early embryo development (bH19 and bDNMT3Lo) are less resistant to abnormal methylation than genes critically involved in oocyte development (bTERF2, bBCL-XL, bPISD, bBUB1, and bSNRPN). Establishment of DNA methylation in bovine oocytes seems to be largely resistant to changes caused by maternal ageing, irrespective of whether the genes are critical to achieve developmental competence in oocytes or early embryos. Mol. Reprod. Dev. 83: 802-814, 2016 © 2016 Wiley Periodicals, Inc.


Subject(s)
Aging/physiology , DNA Methylation/physiology , Gene Expression Regulation/physiology , Oocytes/metabolism , RNA, Messenger/biosynthesis , Animals , Cattle , Female , Oocytes/cytology
13.
Transgenic Res ; 25(3): 361-74, 2016 06.
Article in English | MEDLINE | ID: mdl-26820415

ABSTRACT

The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.


Subject(s)
Animals, Genetically Modified/genetics , Organ Transplantation/trends , Swine/genetics , Transplantation, Heterologous/trends , Animals , Animals, Genetically Modified/growth & development , Genetic Engineering/trends , Humans , Swine/growth & development
14.
Transgenic Res ; 25(1): 63-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26515985

ABSTRACT

Recently, we established the Sleeping Beauty transposon system for germ line competent transgenesis in the pig. Here, we extend this approach to re-target a transposon-tagged locus for a site-specific gene knock-in, and generated a syngeneic cohort of piglets carrying either the original transposon or the re-targeted event. A Cre-loxP-mediated cassette exchange of the tagging transposon with a different reporter gene was performed, followed by flow cytometric sorting and somatic cell nuclear transfer of recombined cells. In parallel, the original cells were employed in somatic cell nuclear transfer to generate clone siblings, thereby resulting in a clone cohort of piglets carrying different reporter transposons at an identical chromosomal location. Importantly, this strategy supersedes the need for an antibiotic selection marker. This approach expands the arsenal of genome engineering technologies in domestic animals, and will facilitate the development of large animal models for human diseases. Potentially, the syngeneic cohort of pigs will be instrumental for vital tracking of transplanted cells in pre-clinical assessments of novel cell therapies.


Subject(s)
Animals, Genetically Modified , DNA Transposable Elements , Genetic Engineering/methods , Sus scrofa/genetics , Animals , Female , Gene Transfer Techniques , Genetic Loci , Genome , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Microsatellite Repeats , Nuclear Transfer Techniques , Transgenes
15.
Xenotransplantation ; 23(5): 338-46, 2016 09.
Article in English | MEDLINE | ID: mdl-27610605

ABSTRACT

BACKGROUND: Xenotransplantation is considered to be a promising solution to the growing demand for suitable donor organs for transplantation. Despite tremendous progress in the generation of pigs with multiple genetic modifications thought to be necessary to overcoming the severe rejection responses after pig-to-non-human primate xenotransplantation, the production of knockout pigs by somatic cell nuclear transfer (SCNT) is still an inefficient process. Producing genetically modified pigs by intracytoplasmic microinjection of porcine zygotes is an alluring alternative. The porcine GGTA1 gene encodes for the α1,3-galactosyltransferase that synthesizes the Gal epitopes on porcine cells which constitute the major antigen in a xenotransplantation setting. GGTA1-KO pigs have successfully been produced by transfecting somatic cells with zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), or CRISPR/Cas targeting GGTA1, followed by SCNT. METHODS: Here, we microinjected a CRISPR/Cas9 vector coding for a single-guide RNA (sgRNA) targeting exon 8 of the GGTA1 gene into the cytoplasm of 97 in vivo-derived porcine zygotes and transferred 86 of the microinjected embryos into three hormonally synchronized recipients. Fetuses and piglets were analyzed by flow cytometry for remaining Gal epitopes. DNA was sequenced to detect mutations at the GGTA1 locus. RESULTS: Two of the recipients remained pregnant as determined by ultrasound scanning on day 25 of gestation. One pregnancy was terminated on day 26, and six healthy fetuses were recovered. The second pregnancy was allowed to go to term and resulted in the birth of six healthy piglets. Flow cytometry analysis revealed the absence of Gal epitopes in four of six fetuses (66%), indicating a biallelic KO of GGTA1. Additionally, three of the six live-born piglets (50%) did not express Gal epitopes on their cell surface. Two fetuses and two piglets showed a mosaicism with a mixed population of Gal-free and Gal-expressing cells. Only a single piglet did not have any genomic modifications. Genomic sequencing revealed indel formation at the GGTA1 locus ranging from +17 bp to -20 bp. CONCLUSIONS: These results demonstrate the efficacy of CRISPR/Cas to generate genetic modifications in pigs by simplified technology, such as intracytoplasmic microinjection into zygotes, which would significantly facilitate the production of genetically modified pigs suitable for xenotransplantation. Importantly, this simplified injection protocol avoids the penetration of the vulnerable pronuclear membrane, and is thus compatible with higher survival rates of microinjected embryos, which in turn facilitates production of genetically modified piglets.


Subject(s)
Cytoplasm , Galactosyltransferases/metabolism , Zygote , Animals , Animals, Genetically Modified , CRISPR-Cas Systems/genetics , Cytoplasm/genetics , Galactosyltransferases/deficiency , Gene Knockout Techniques/methods , Microinjections/methods , Nuclear Transfer Techniques , Swine
16.
Xenotransplantation ; 23(2): 117-27, 2016 03.
Article in English | MEDLINE | ID: mdl-26773447

ABSTRACT

BACKGROUND: Xenogeneic thrombotic microangiopathy (TMA) and acute vascular rejection (AVR) prevent long-term survival of porcine xenografts after transplantation into non-human primates. Preformed xenoreactive natural antibodies (XNA) cause endothelial damage and activate the complement system. Mechanisms of xenogeneic coagulation and platelet activation are only poorly characterized. METHODS: A microfluidic flow chamber was used to study platelet activation and thrombus formation of human platelet-rich plasma (PRP) upon perfusion over wild-type (WT) or α-1,3- galactosyltransferase knockout (GTKO) and human CD46 (hCD46) transgenic porcine aortic endothelial cells (PAEC). Activation of plasma coagulation (thrombin-anti-thrombin complex; TAT) and complement (C3a, C5a) was studied in human platelet-free plasma (PFP) after co-incubation with PAEC. The activation of PAEC (E-Selectin, tissue factor, ICAM-1, ICAM-2, VCAM-1) was studied after incubation with human serum. Eculizumab (200 µg/ml) was used to inhibit terminal complement activation in all experiments. RESULTS: WT-PAEC perfused with human PRP showed thrombus formation at different shear rates (3 dyn/cm(2) : 23 ± 10%; 10 dyn/cm(2) : 17 ± 10% of flow chamber viewing field). GTKO/hCD46 PAEC exhibited reduced, but not fully prevented thrombus formation (3 dyn/cm(2) : 12 ± 12%). Porcine PRP caused little or no thrombus formation (3.0 ± 4% and 0.5 ± 0.9%, respectively). Flow cytometry of human platelets after perfusion over WT-PAEC revealed an increase in platelet CD62P expression (29.5 ± 3%), compared to non-perfused PRP (7 ± 2%) or PRP running through empty flow chambers (12.7 ± 0.3%). Incubation of human PFP with PAEC resulted in an increase of TAT that correlated with C5a activation. Specific inhibition of complement by eculizumab prevented thrombus formation (WT-PAEC: 1.6 ± 2% at 3 dyn/cm(2) and 0.24 ± 0.33% at 10 dyn/cm(2) , GTKO/hCD46 PAEC: 0.2 ± 0.3% at 3 dyn/cm(2) ) as well as activation of coagulation and platelets. Induction of endothelial E-Selectin and VCAM-1 in WT-PAEC upon incubation with human serum was significantly reduced by eculizumab. Eculizumab did not reduce thrombin generation capacity of human PRP or normal platelet aggregation. CONCLUSION: Thrombus formation in this ex vivo model of xenogeneic TMA was closely linked with complement activation. Specific inhibition of complement C5 by eculizumab prevented endothelial cell activation, but also coagulation and platelet activation without compromising thrombin generation capacity of human blood or normal platelet function.


Subject(s)
Blood Coagulation/immunology , Complement Activation/immunology , Complement C5/immunology , Transplantation, Heterologous , Animals , Animals, Genetically Modified , Blood Platelets/immunology , Endothelial Cells/immunology , Humans , Platelet Activation , Swine , Transplantation, Heterologous/methods
17.
Chromosome Res ; 23(1): 7-15, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25596823

ABSTRACT

Genome editing tools (GET), including zinc-finger nucleases (ZFN), transcription activator-like endonucleases (TALENS), and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These genome editing tools mediate targeted genetic alterations by enhancing DNA mutation frequency via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, GETs can increase gene targeting and gene disruption via mutagenic DNA repair more than 10,000-fold. Recently, a novel class of genome editing tools was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN. Current results indicate that these tools can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on the use of ZFNs to modify the genome of farm animals, summarizes current knowledge on the underlying mechanism, and discusses new opportunities for generating genetically modified farm animals.


Subject(s)
Animals, Domestic/genetics , CRISPR-Cas Systems/genetics , Deoxyribonucleases/genetics , Endonucleases/metabolism , Gene Targeting/methods , Genetic Engineering/methods , Zinc Fingers/genetics , Animals , Cattle , Swine
18.
Surg Endosc ; 30(7): 3077-88, 2016 07.
Article in English | MEDLINE | ID: mdl-26487224

ABSTRACT

BACKGROUND: Interventional endoscopies entail a risk of infection secondary to perforation of the luminal wall. Thereby, bacteria may be introduced into the sterile environment of the peritoneal cavity (PC). Limited data are available regarding the efficacy of prophylactic anti-infective treatments. The aim of the study was to examine the efficacy/safety of anti-infective means in the prevention of infection by interventional endoscopies in a randomized controlled animal trial. METHODS: Forty pigs were randomized to: 1: control; 2: oral lavage; 3: gastric lavage; 4: oral/gastric lavage; 5: i.m. antibiotics. Lavage was performed with Octenisept prior to the operation. After gastric wall perforation, peritoneoscopy was performed. Before the procedure, after closure and prior to autopsy, intraabdominal lavage for bacterial culture was taken using mini-laparoscopy. At autopsy, macroscopic appearance of the PC was scored. Lavage fluids were grown to identify/quantify bacterial load. Concentration of intraperitoneal bacteria at autopsy was defined as main outcome parameter. RESULTS: No major complications occurred in any of the procedures. Bacterial load of the PC at autopsy was significantly reduced with antibiotics compared to all other groups, whereas it did not differ between the lavage groups and control. Macroscopic scoring of the PC showed significant lower rate of intraabdominal abscesses in the antibiotic group compared to the lavage groups and control (p < 0.01). CONCLUSION: Only antibiotic prophylaxis is effective for the prevention of infection after iatrogenic perforation of the gastrointestinal wall. There was no difference between any form of lavage and the control group. Further studies in humans are required to prove these animal data.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Antibiotic Prophylaxis/methods , Bacterial Infections/prevention & control , Iatrogenic Disease/prevention & control , Laparoscopy/adverse effects , Peritoneal Cavity/microbiology , Stomach/surgery , Therapeutic Irrigation/methods , Abdominal Abscess/etiology , Abdominal Abscess/prevention & control , Animals , Bacterial Infections/etiology , Disease Models, Animal , Random Allocation , Swine
19.
Cell Mol Life Sci ; 72(23): 4545-60, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26439925

ABSTRACT

Pluripotent stem cells (PSCs) are a unique type of cells because they exhibit the characteristics of self-renewal and pluripotency. PSCs may be induced to differentiate into any cell type, even male and female germ cells, suggesting their potential as novel cell-based therapeutic treatment for infertility problems. Spermatogenesis is an intricate biological process that starts from self-renewal of spermatogonial stem cells (SSCs) and leads to differentiated haploid spermatozoa. Errors at any stage in spermatogenesis may result in male infertility. During the past decade, much progress has been made in the derivation of male germ cells from various types of progenitor stem cells. Currently, there are two main approaches for the derivation of functional germ cells from PSCs, either the induction of in vitro differentiation to produce haploid cell products, or combination of in vitro differentiation and in vivo transplantation. The production of mature and fertile spermatozoa from stem cells might provide an unlimited source of autologous gametes for treatment of male infertility. Here, we discuss the current state of the art regarding the differentiation potential of SSCs, embryonic stem cells, and induced pluripotent stem cells to produce functional male germ cells. We also discuss the possible use of livestock-derived PSCs as a novel option for animal reproduction and infertility treatment.

20.
Mol Hum Reprod ; 21(10): 770-82, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26155800

ABSTRACT

To mimic post-ovulatory ageing, we have extended the in vitro maturation (IVM) phase to 48 h and examined effects on (i) developmental potential, (ii) expression of a panel of developmentally important genes and (iii) gene-specific epigenetic marks. Results were compared with the 24 h IVM protocol (control) usually employed for bovine oocytes. Cleavage rates and blastocyst yields were significantly reduced in oocytes after extended IVM. No significant differences were observed in the methylation of entire alleles in oocytes for the genes bH19, bSNRPN, bZAR1, bOct4 and bDNMT3A. However, we found differentially methylated CpG sites in the bDNMT3Ls locus in oocytes after extended IVM and in embryos derived from them compared with controls. Moreover, embryos derived from the 48 h matured oocyte group were significantly less methylated at CpG5 and CpG7 compared with the 24 h group. CpG7 was significantly hypermethylated in embryos produced from the control oocytes, but not in oocytes matured for 48 h. Furthermore, methylation for CpG5-CpG8 of bDNMT3Ls was significantly lower in oocytes of the 24 h group compared with embryos derived therefrom, whereas no such difference was found for oocytes and embryos of the in vitro aged group. Expression of most of the selected genes was not affected by duration of IVM. However, transcript abundance for the imprinted gene bIGF2R was significantly reduced in oocytes analyzed after extended IVM compared with control oocytes. Transcript levels for bPRDX1, bDNMT3A and bBCLXL were significantly reduced in 4- to 8-cell embryos derived from in vitro aged oocytes. These results indicate that extended IVM leads to ageing-like alterations and demonstrate that epigenetic mechanisms are critically involved in ageing of bovine oocytes, which warrants further studies into epigenetic mechanisms involved in ageing of female germ cells, including humans.


Subject(s)
Cattle/genetics , DNA Methylation , Gene Expression Regulation, Developmental , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/metabolism , Alleles , Animals , Cells, Cultured , Cellular Senescence/genetics , CpG Islands/genetics , DNA/genetics , DNA-Cytosine Methylases/genetics , DNA-Cytosine Methylases/metabolism , Embryo Transfer , Female , Fertilization in Vitro , Oocytes/cytology , Promoter Regions, Genetic/genetics , Real-Time Polymerase Chain Reaction , Time Factors , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL