Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(44): e2307593120, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37871223

ABSTRACT

Chronic lymphocytic leukemia (CLL) is one of the most diagnosed forms of leukemia worldwide and it is usually classified into two forms: indolent and aggressive. These two forms are characterized by distinct molecular features that drive different responses to treatment and clinical outcomes. In this context, a better understanding of the molecular landscape of the CLL forms may potentially lead to the development of new drugs or the identification of novel biomarkers. Human endogenous retroviruses (HERVs) are a class of transposable elements that have been associated with the development of different human cancers, including different forms of leukemias. However, no studies about HERVs in CLL have ever been reported so far. Here, we present the first locus-specific profiling of HERV expression in both the aggressive and indolent forms of CLL. Our analyses revealed several dysregulations in HERV expression occurring in CLL and some of them were specific for either the aggressive or indolent form of CLL. Such results were also validated by analyzing an external cohort of CLL patients and by RT-qPCR. Moreover, in silico analyses have shown relevant signaling pathways associated with them suggesting a potential involvement of the dysregulated HERVs in these pathways and consequently in CLL development.


Subject(s)
Endogenous Retroviruses , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Endogenous Retroviruses/genetics , Biomarkers
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35064090

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia and is characterized by chromosomal aberrations including 13q, 11q, and 17p deletions and a trisomy of chromosome 12 (T12). 13q deletions are often associated with 11q and 17p deletions in aggressive cases. Conversely, T12 CLLs show a variable prognosis, and association with 13q deletions is uncommon. The miR-15a/16-1 cluster is the functional target of 13q deletions, leading to BCL2 overexpression. Chromosomal aberrations in CLL are associated with prognosis, and their identification is carried out by fluorescence in situ hybridization (FISH). Since standard FISH only detects large deletions, we investigated the presence of undetected microdeletions targeting miR-15a/16-1 in CLL cases. We found that ∼34% of CLL samples show an unreported loss of the miR-15a/16-1 locus regardless of their cytogenetic profile. Interestingly, 15 out of 39 (∼39%) of all CLLs with T12, carry microdeletions of miR-15a/16-1, indicating that, in patients with T12, miR-15a/16-1 are mostly inactivated by microdeletions. In addition, ∼40% of CLL cases bearing T12, 17p-, and 11q- showed unidentified microdeletions of miR-15a/16-1, suggesting that miR-15a/16-1 loss cooperates with such chromosomal alterations in CLL. These data may have clinical relevance for the successful stratification of patients for treatment.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 11 , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 17 , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Trisomy , DNA Copy Number Variations , Genetic Association Studies , Genetic Predisposition to Disease , Humans , In Situ Hybridization, Fluorescence , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
3.
Ann Surg ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771951

ABSTRACT

OBJECTIVE: We aimed to assess the levels of MDM2-DNA within extracellular vesicles (EVs) isolated from the serum of retroperitoneal liposarcoma (RLS) patients versus healthy donors, as well as within the same patients at the time of surgery versus post-operative surveillance visits. To determine whether EV-MDM2 may serve as a possible first-ever biomarker of liposarcoma recurrence. BACKGROUND: A hallmark of well-differentiated and de-differentiated (WD/DD) retroperitoneal liposarcoma is elevated MDM2 due to genome amplification, with recurrence rates of >50% even after complete resection. Imaging technologies frequently cannot resolve recurrent WD/DD-RLS versus postoperative scarring. Early detection of recurrent lesions, for which biomarkers are lacking, would guide surveillance and treatment decisions. METHODS: WD/DD-RLS serum samples were collected both at the time of surgery and during follow-up visits from 42 patients, along with sera from healthy donors (n=14). EVs were isolated, DNA purified and MDM2-DNA levels determined through q-PCR analysis. Non-parametric tests were employed to compare EV-MDM2 DNA levels from patients versus control group, as well as the time of surgery versus post-surgery conditions. RESULTS: EV-MDM2 levels were significantly higher in WD/DD-RLS than controls (P= 0.00085). Moreover, EV-MDM2 levels were remarkably decreased in WD/DD-RLS patients after resection (P=0.00036), reaching values comparable to control group (P=0.124). During post-operative surveillance, significant increases of EV-MDM2 was observed in some patients, correlating with CT scan evidence of recurrent or persistent post-resection disease. CONCLUSIONS: Serum EV-MDM2 may serve as a potential biomarker of early recurrent or post-operatively persistent WD/DD-RLS, a disease currently lacking such determinants.

4.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836616

ABSTRACT

Despite advances that have improved the treatment of chronic myeloid leukemia (CML) patients in chronic phase, the mechanisms of the transition from chronic phase CML to blast crisis (BC) are not fully understood. Considering the key role of miR-15/16 loci in the pathogenesis of myeloid and lymphocytic leukemia, here we aimed to correlate the expression of miR-15a/16 and miR-15b/16 to progression of CML from chronic phase to BC. We analyzed the expression of the two miR-15/16 clusters in 17 CML patients in chronic phase and 22 patients in BC and in 11 paired chronic phase and BC CML patients. BC CMLs show a significant reduction of the expression of miR-15a/-15b/16 compared to CMLs in chronic phase. Moreover, BC CMLs showed an overexpression of miR-15/16 direct targets such as Bmi-1, ROR1, and Bcl-2 compared to CMLs in chronic phase. This study highlights the loss of both miR-15/16 clusters as a potential oncogenic driver in the transition from chronic phase to BC in CML patients.


Subject(s)
Blast Crisis/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , MicroRNAs/genetics , Adult , Blast Crisis/genetics , Disease Progression , Female , Gene Expression Regulation, Leukemic , Genetic Loci , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Male , Middle Aged , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
5.
Proc Natl Acad Sci U S A ; 117(22): 12332-12340, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32424097

ABSTRACT

Double knockout of the two miR-15/16 loci in mouse resulted in the development of acute myeloid leukemia (AML). This result suggested that, at least, a fraction of human AMLs could be due to a similar mechanism. We analyzed the role of the two miR-15/16 clusters in 93 myelodysplastic syndrome (MDS) patients divided in three subgroups: patients with MDS, patients with MDS before transforming into AML (MDS-T), and patients with AML evolving from MDS (MDS-AML). Then, we tested 139 AML cases and 14 different AML cell lines by assessing microRNA (miRNA) expression, target protein expression, genetic loss, and silencing. MDS-T and MDS-AML patients show a reduction of the expression of miR-15a/-15b/-16 compared to MDS patients. Each miRNA can significantly predict MDS and MDS-T groups. Then, 79% of primary AMLs show a reduced expression of miR-15a and/or miR-15b. The expression of miR-15a/-15b/-16 significantly stratified AML patients in two prognostic classes. Furthermore, 40% of AML cell lines showed a combined loss of the expression of miR-15a/-15b and overexpression of their direct/indirect targets. As potential mechanisms involved in the silencing of the two miR-15/16 loci, we identified a genetic loss of miR-15a and miR-15b and silencing of these two loci by methylation. We identified a potential driver oncogenic role in the loss of expression of both miR-15/16 clusters in the progression of MDS into AML and in AML pathogenesis. The stratification of AML patients, based on miR-15/16 expression, can lead to targeted and combination therapies for the treatment of this incurable disease.


Subject(s)
Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , Aged , Aged, 80 and over , Cohort Studies , Disease Progression , Female , Gene Expression Regulation, Leukemic , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Male , MicroRNAs/metabolism , Middle Aged
6.
Proc Natl Acad Sci U S A ; 115(51): 13069-13074, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30478046

ABSTRACT

MicroRNAs (miRNAs) have been extensively reported to be associated with hematological malignancies. The loss of miR-15a/16-1 at chromosome 13q14 is a hallmark of most of human chronic lymphocytic leukemia (CLL). Deletion of murine miR-15a/16-1 and miR-15b/16-2 has been demonstrated to promote B cell malignancies. Here, we evaluate the biological role of miR-15/16 clusters, crossbreeding miR-15a/16-1 and miR-15b/16-2 knockout mice. Unexpectedly, the complete deletion of both clusters promoted myeloproliferative disorders in the majority of the mice by the age of 5 months with a penetrance of 70%. These mice showed a significant enlargement of spleen and abnormal swelling of lymph nodes. Flow cytometry characterization demonstrated an expanded CD11b/Gr-1 double-positive myeloid population both in spleen and in bone marrow. The transplantation of splenocytes harvested from double-KO mice into wild-type recipient mice resulted in the development of myeloproliferative disorders, as observed in the donors. In vivo, miR-15/16 cluster deletion up-regulated the expression of Cyclin D1, Cyclin D2, and Bcl-2. Taken together, our findings identify a driver oncogenic role for miR-15/16 cluster deletion in different leukocytic cell lineages.


Subject(s)
Leukemia, Myeloid, Acute/etiology , MicroRNAs/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/pathology , Cyclins/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Lymph Nodes/metabolism , Lymph Nodes/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Spleen/metabolism , Spleen/pathology
7.
Blood ; 132(20): 2179-2182, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30242085

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia. It is characterized by the accumulation of CD19+/CD5+ lymphocytes and can have variable outcomes. Richter syndrome (RS) is a lethal complication in CLL patients that results in aggressive B-cell lymphomas, and there are no tests to predict its occurrence. Because alterations in microRNA expression can predict the development and progression of several cancers, we investigated whether dysregulation of specific microRNAs can predict RS in CLL patients. Thus, we compared microRNA expression levels in samples from 49 CLL patients who later developed RS with samples from 59 CLL patients who did not. We found that high expression of miR-125a-5p or low expression of miR -34a-5p can predict ∼50% of RS with a false positive rate of ∼9%. We found that CLL patients predicted to develop RS show either an increase of miR-125a-5p expression (∼20-fold) or a decrease of miR-34a-5p expression (∼21-fold) compared with CLL patients that are not predicted to develop RS. Thus, miR-125a-5p and miR-34a-5p can be valuable predictor markers of RS and have the potential to provide physicians with information that can indicate the best therapeutic strategy for CLL patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , MicroRNAs/genetics , Disease Progression , Down-Regulation , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Up-Regulation
8.
BMC Gastroenterol ; 20(1): 137, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32375666

ABSTRACT

BACKGROUND: Pancreatic and peri-pancreatic neoplasms encompass a variety of histotypes characterized by a heterogeneous prognostic impact. miRNAs are considered efficient candidate biomarkers due to their high stability in tissues and body fluids. We applied Nanostring profiling of circulating exosomal miRNAs to distinct pancreatic lesions in order to establish a source for biomarker development. METHODS: A series of 140 plasma samples obtained from patients affected by pancreatic ductal adenocarcinoma (PDAC, n = 58), pancreatic neuroendocrine tumors (PanNET, n = 42), intraductal papillary mucinous neoplasms (IPMN, n = 20), and ampulla of Vater carcinomas (AVC, n = 20) were analyzed. Comprehensive miRNA profiling was performed on plasma-derived exosomes. Relevant miRNAs were validated by qRT-PCR and in situ hybridization (ISH). RESULTS: Lesion specific miRNAs were identified through multiple disease comparisons. Selected miRNAs were validated in the plasma by qRT-PCR and at tissue level by ISH. We leveraged the presence of clinical subtypes with each disease cohort to identify miRNAs that are differentially enriched in aggressive phenotypes. CONCLUSIONS: This study shows that pancreatic lesions are characterized by specific exosomal-miRNA signatures. We also provide the basis for further explorations in order to better understand the relevance of these signatures in pancreatic neoplasms.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Exosomes/genetics , MicroRNAs/blood , Neuroendocrine Tumors/genetics , Pancreatic Neoplasms/genetics , Aged , Ampulla of Vater/pathology , Biomarkers, Tumor/genetics , Cohort Studies , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Pancreas/pathology , Prognosis , Pancreatic Neoplasms
9.
Nucleic Acids Res ; 46(D1): D354-D359, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29036351

ABSTRACT

miRandola (http://mirandola.iit.cnr.it/) is a database of extracellular non-coding RNAs (ncRNAs) that was initially published in 2012, foreseeing the relevance of ncRNAs as non-invasive biomarkers. An increasing amount of experimental evidence shows that ncRNAs are frequently dysregulated in diseases. Further, ncRNAs have been discovered in different extracellular forms, such as exosomes, which circulate in human body fluids. Thus, miRandola 2017 is an effort to update and collect the accumulating information on extracellular ncRNAs that is spread across scientific publications and different databases. Data are manually curated from 314 articles that describe miRNAs, long non-coding RNAs and circular RNAs. Fourteen organisms are now included in the database, and associations of ncRNAs with 25 drugs, 47 sample types and 197 diseases. miRandola also classifies extracellular RNAs based on their extracellular form: Argonaute2 protein, exosome, microvesicle, microparticle, membrane vesicle, high density lipoprotein and circulating. We also implemented a new web interface to improve the user experience.


Subject(s)
Databases, Genetic , Knowledge Bases , RNA, Untranslated , Biomarkers , Cell-Free Nucleic Acids , Data Curation , Humans , MicroRNAs , RNA , RNA, Circular , RNA, Long Noncoding , User-Computer Interface
10.
Proc Natl Acad Sci U S A ; 114(21): E4203-E4212, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484014

ABSTRACT

Mutated protein-coding genes drive the molecular pathogenesis of many diseases, including cancer. Specifically, mutated KRAS is a documented driver for malignant transformation, occurring early during the pathogenesis of cancers such as lung and pancreatic adenocarcinomas. Therapeutically, the indiscriminate targeting of wild-type and point-mutated transcripts represents an important limitation. Here, we leveraged on the design of miRNA-like artificial molecules (amiRNAs) to specifically target point-mutated genes, such as KRAS, without affecting their wild-type counterparts. Compared with an siRNA-like approach, the requirement of perfect complementarity of the microRNA seed region to a given target sequence in the microRNA/target model has proven to be a more efficient strategy, accomplishing the selective targeting of point-mutated KRAS in vitro and in vivo.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , MicroRNAs/genetics , Proto-Oncogene Proteins p21(ras)/genetics , RNA, Small Interfering/genetics , A549 Cells , Animals , Antineoplastic Agents/pharmacology , Apoptosis/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gefitinib , HEK293 Cells , Humans , Lung Neoplasms/genetics , Mice , Mice, Nude , Neoplasm Transplantation , Polymorphism, Single Nucleotide/genetics , Quinazolines/pharmacology , RNA Interference , Transplantation, Heterologous
11.
Proc Natl Acad Sci U S A ; 114(30): 8071-8076, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696308

ABSTRACT

Small, noncoding RNAs are short untranslated RNA molecules, some of which have been associated with cancer development. Recently we showed that a class of small RNAs generated during the maturation process of tRNAs (tRNA-derived small RNAs, hereafter "tsRNAs") is dysregulated in cancer. Specifically, we uncovered tsRNA signatures in chronic lymphocytic leukemia and lung cancer and demonstrated that the ts-4521/3676 cluster (now called "ts-101" and "ts-53," respectively), ts-46, and ts-47 are down-regulated in these malignancies. Furthermore, we showed that tsRNAs are similar to Piwi-interacting RNAs (piRNAs) and demonstrated that ts-101 and ts-53 can associate with PiwiL2, a protein involved in the silencing of transposons. In this study, we extended our investigation on tsRNA signatures to samples collected from patients with colon, breast, or ovarian cancer and cell lines harboring specific oncogenic mutations and representing different stages of cancer progression. We detected tsRNA signatures in all patient samples and determined that tsRNA expression is altered upon oncogene activation and during cancer staging. In addition, we generated a knocked-out cell model for ts-101 and ts-46 in HEK-293 cells and found significant differences in gene-expression patterns, with activation of genes involved in cell survival and down-regulation of genes involved in apoptosis and chromatin structure. Finally, we overexpressed ts-46 and ts-47 in two lung cancer cell lines and performed a clonogenic assay to examine their role in cell proliferation. We observed a strong inhibition of colony formation in cells overexpressing these tsRNAs compared with untreated cells, confirming that tsRNAs affect cell growth and survival.


Subject(s)
Neoplasms/metabolism , RNA, Small Untranslated/metabolism , A549 Cells , Case-Control Studies , HEK293 Cells , Humans , Oncogenes
12.
Proc Natl Acad Sci U S A ; 113(18): 5071-6, 2016 May 03.
Article in English | MEDLINE | ID: mdl-27071132

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common human leukemia, and transgenic mouse studies indicate that activation of the T-cell leukemia/lymphoma 1 (TCL1) oncogene is a contributing event in the pathogenesis of the aggressive form of this disease. While studying the regulation of TCL1 expression, we identified the microRNA cluster miR-4521/3676 and discovered that these two microRNAs are associated with tRNA sequences and that this region can produce two small RNAs, members of a recently identified class of small noncoding RNAs, tRNA-derived small RNAs (tsRNAs). We further proved that miR-3676 and miR-4521 are tsRNAs using Northern blot analysis. We found that, like ts-3676, ts-4521 is down-regulated and mutated in CLL. Analysis of lung cancer samples revealed that both ts-3676 and ts-4521 are down-regulated and mutated in patient tumor samples. Because tsRNAs are similar in nature to piRNAs [P-element-induced wimpy testis (Piwi)-interacting small RNAs], we investigated whether ts-3676 and ts-4521 can interact with Piwi proteins and found these two tsRNAs in complexes containing Piwi-like protein 2 (PIWIL2). To determine whether other tsRNAs are involved in cancer, we generated a custom microarray chip containing 120 tsRNAs 16 bp or more in size. Microarray hybridization experiments revealed tsRNA signatures in CLL and lung cancer, indicating that, like microRNAs, tsRNAs may have an oncogenic and/or tumor-suppressor function in hematopoietic malignancies and solid tumors. Thus, our results show that tsRNAs are dysregulated in human cancer.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Lung Neoplasms/genetics , Multigene Family/genetics , RNA, Neoplasm/genetics , RNA, Small Untranslated/genetics , RNA, Transfer/genetics , Gene Expression Regulation, Neoplastic/genetics , Genetic Markers/genetics , Genetic Predisposition to Disease/genetics , Humans
13.
Nucleic Acids Res ; 44(13): 6298-308, 2016 07 27.
Article in English | MEDLINE | ID: mdl-27298257

ABSTRACT

RNA editing is a finely tuned, dynamic mechanism for post-transcriptional gene regulation that has been thoroughly investigated in the last decade. Nevertheless, RNA editing in non-coding RNA, such as microRNA (miRNA), have caused great debate and have called for deeper investigation. Until recently, in fact, inadequate methodologies and experimental contexts have been unable to provide detailed insights for further elucidation of RNA editing affecting miRNAs, especially in cancer.In this work, we leverage on recent innovative bioinformatics approaches applied to a more informative experimental context in order to analyze the variations in miRNA seed region editing activity during a time course of a hypoxia-exposed breast cancer cell line. By investigating its behavior in a dynamic context, we found that miRNA editing events in the seed region are not depended on miRNA expression, unprecedentedly providing insights on the targetome shifts derived from these modifications. This reveals that miRNA editing acts under the influence of environmentally induced stimuli.Our results show a miRNA editing activity trend aligning with cellular pathways closely associated to hypoxia, such as the VEGF and PI3K/Akt pathways, providing important novel insights on this poorly elucidated phenomenon.


Subject(s)
Breast Neoplasms/genetics , MicroRNAs/genetics , Oncogene Protein v-akt/genetics , RNA Editing/genetics , Vascular Endothelial Growth Factor A/genetics , Cell Hypoxia/genetics , Female , Gene Expression Regulation, Neoplastic , Gene-Environment Interaction , Humans , MCF-7 Cells , MicroRNAs/biosynthesis , Phosphatidylinositol 3-Kinases/genetics , Signal Transduction
14.
Hum Mutat ; 37(12): 1283-1298, 2016 12.
Article in English | MEDLINE | ID: mdl-27516218

ABSTRACT

One of the most significant biological discoveries of the last decade is represented by the reality that the vast majority of the transcribed genomic output comprises diverse classes of noncoding RNAs (ncRNAs) that may play key roles and/or be affected by many biochemical cellular processes (i.e., RNA editing), with implications in human health and disease. With 90% of the human genome being transcribed and novel classes of ncRNA emerging (tRNA-derived small RNAs and circular RNAs among others), the great majority of the human transcriptome suggests that many important ncRNA functions/processes are yet to be discovered. An approach to filling such vast void of knowledge has been recently provided by the increasing application of next-generation sequencing (NGS), offering the unprecedented opportunity to obtain a more accurate profiling with higher resolution, increased throughput, sequencing depth, and low experimental complexity, concurrently posing an increasing challenge in terms of efficiency, accuracy, and usability of data analysis software. This review provides an overview of ncRNAs, NGS technology, and the most recent/popular computational approaches and the challenges they attempt to solve, which are essential to a more sensitive and comprehensive ncRNA annotation capable of furthering our understanding of this still vastly uncharted genomic territory.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA, Untranslated/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Genome, Human , Humans , Molecular Sequence Annotation , Software
15.
iScience ; 27(2): 108810, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303722

ABSTRACT

tRNA-derived ncRNAs are a heterogeneous class of non-coding RNAs recently proposed to be active regulators of gene expression and be involved in many diseases, including cancer. Consequently, several online resources on tRNA-derived ncRNAs have been released. Although interesting, such resources present only basic features and do not adequately exploit the wealth of knowledge available about tRNA-derived ncRNAs. Therefore, we introduce tRFUniverse, a novel online resource for the analysis of tRNA-derived ncRNAs in human cancer. tRFUniverse presents an extensive collection of classes of tRNA-derived ncRNAs analyzed across all the TCGA and TARGET tumor cohorts, NCI-60 cell lines, and biological fluids. Moreover, public AGO CLASH/CLIP-Seq data were analyzed to identify the molecular interactions between tRNA-derived ncRNAs and other transcripts. Importantly, tRFUniverse combines in a single resource a comprehensive set of features that we believe may be helpful to investigate the involvement of tRNA-derived ncRNAs in cancer biology.

16.
bioRxiv ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38826406

ABSTRACT

KDM2B is a JmjC domain lysine demethylase, which promotes cell immortalization, stem cell self-renewal and tumorigenesis. Here we employed a multi-omics strategy to address its role in ribosome biogenesis and mRNA translation. These processes are required to sustain cell proliferation, an important cancer hallmark. Contrary to earlier observations, KDM2B promotes ribosome biogenesis by stimulating the transcription of genes encoding ribosome biogenesis factors and ribosomal proteins, particularly those involved in the biogenesis of the 40S ribosomal subunits. Knockdown of KDM2B impaired the assembly of the small and large subunit processomes, as evidenced by specific defects in pre-ribosomal RNA processing. The final outcome was a decrease in the rate of ribosome assembly and in the abundance of ribosomes, and inhibition of mRNA translation. The inhibition of translation was distributed unequally among mRNAs with different features, suggesting that mRNA-embedded properties influence how mRNAs interpret ribosome abundance. This study identified a novel mechanism contributing to the regulation of translation and provided evidence for a rich biology elicited by a pathway that depends on KDM2B, and perhaps other regulators of translation.

17.
Cell Death Dis ; 15(3): 208, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472212

ABSTRACT

Therapy of melanoma has improved dramatically over the last years thanks to the development of targeted therapies (MAPKi) and immunotherapies. However, drug resistance continues to limit the efficacy of these therapies. Our research group has provided robust evidence as to the involvement of a set of microRNAs in the development of resistance to target therapy in BRAF-mutated melanomas. Among them, a pivotal role is played by the oncosuppressor miR-579-3p. Here we show that miR-579-3p and the microphthalmia-associated transcription factor (MITF) influence reciprocally their expression through positive feedback regulatory loops. In particular we show that miR-579-3p is specifically deregulated in BRAF-mutant melanomas and that its expression levels mirror those of MITF. Luciferase and ChIP studies show that MITF is a positive regulator of miR-579-3p, which is located in the intron 11 of the human gene ZFR (Zink-finger recombinase) and is co-transcribed with its host gene. Moreover, miR-579-3p, by targeting BRAF, is able to stabilize MITF protein thus inducing its own transcription. From biological points of view, early exposure to MAPKi or, alternatively miR-579-3p transfection, induce block of proliferation and trigger senescence programs in BRAF-mutant melanoma cells. Finally, the long-term development of resistance to MAPKi is able to select cells characterized by the loss of both miR-579-3p and MITF and the same down-regulation is also present in patients relapsing after treatments. Altogether these findings suggest that miR-579-3p/MITF interplay potentially governs the balance between proliferation, senescence and resistance to therapies in BRAF-mutant melanomas.


Subject(s)
Melanoma , MicroRNAs , Humans , Melanoma/genetics , Proto-Oncogene Proteins B-raf/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Neoplasm Recurrence, Local/genetics , MicroRNAs/genetics , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
18.
Metabolism ; 150: 155719, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37935302

ABSTRACT

INTRODUCTION: KDM2B encodes a JmjC domain-containing histone lysine demethylase, which functions as an oncogene in several types of tumors, including TNBC. This study was initiated to address the cancer relevance of the results of our earlier work, which had shown that overexpression of KDM2B renders mouse embryonic fibroblasts (MEFs) resistant to oxidative stress by regulating antioxidant mechanisms. METHODS: We mainly employed a multi-omics strategy consisting of RNA-Seq, quantitative TMT proteomics, Mass-spectrometry-based global metabolomics, ATAC-Seq and ChIP-seq, to explore the role of KDM2B in the resistance to oxidative stress and intermediary metabolism. These data and data from existing patient datasets were analyzed using bioinformatic tools, including exon-intron-split analysis (EISA), FLUFF and clustering analyses. The main genetic strategy we employed was gene silencing with shRNAs. ROS were measured by flow cytometry, following staining with CellROX and various metabolites were measured with biochemical assays, using commercially available kits. Gene expression was monitored with qRT-PCR and immunoblotting, as indicated. RESULTS: The knockdown of KDM2B in basal-like breast cancer cell lines lowers the levels of GSH and sensitizes the cells to ROS inducers, GSH targeting molecules, and DUB inhibitors. To address the mechanism of GSH regulation, we knocked down KDM2B in MDA-MB-231 cells and we examined the effects of the knockdown, using a multi-omics strategy. The results showed that KDM2B, functioning in the context of ncPRC1.1, regulates a network of epigenetic and transcription factors, which control a host of metabolic enzymes, including those involved in the SGOC, glutamate, and GSH metabolism. They also showed that KDM2B enhances the chromatin accessibility and expression of MYC and ATF4, and that it binds in concert with MYC and ATF4, the promoters of a large number of transcriptionally active genes, including many, encoding metabolic enzymes. Additionally, MYC and ATF4 binding sites were enriched in genes whose accessibility depends on KDM2B, and analysis of a cohort of TNBCs expressing high or low levels of KDM2B, but similar levels of MYC and ATF4 identified a subset of MYC targets, whose expression correlates with the expression of KDM2B. Further analyses of basal-like TNBCs in the same cohort, revealed that tumors expressing high levels of all three regulators exhibit a distinct metabolic signature that carries a poor prognosis. CONCLUSIONS: The present study links KDM2B, ATF4, and MYC in a transcriptional network that regulates the expression of multiple metabolic enzymes, including those that control the interconnected SGOC, glutamate, and GSH metabolic pathways. The co-occupancy of the promoters of many transcriptionally active genes, by all three factors, the enrichment of MYC binding sites in genes whose chromatin accessibility depends on KDM2B, and the correlation of the levels of KDM2B with the expression of a subset of MYC target genes in tumors that express similar levels of MYC, suggest that KDM2B regulates both the expression and the transcriptional activity of MYC. Importantly, the concerted expression of all three factors also defines a distinct metabolic subset of TNBCs with poor prognosis. Overall, this study identifies novel mechanisms of SGOC regulation, suggests novel KDM2B-dependent metabolic vulnerabilities in TNBC, and provides new insights into the role of KDM2B in the epigenetic regulation of transcription.


Subject(s)
Amino Acids , Epigenesis, Genetic , F-Box Proteins , Jumonji Domain-Containing Histone Demethylases , Triple Negative Breast Neoplasms , Animals , Humans , Mice , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Amino Acids/genetics , Amino Acids/metabolism , Cell Line, Tumor , Chromatin , F-Box Proteins/genetics , F-Box Proteins/metabolism , Fibroblasts/metabolism , Glutamates/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Reactive Oxygen Species/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism
19.
Signal Transduct Target Ther ; 9(1): 31, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38342897

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, characterized by an intense desmoplastic reaction that compresses blood vessels and limits nutrient supplies. PDAC aggressiveness largely relies on its extraordinary capability to thrive and progress in a challenging tumor microenvironment. Dysregulation of the onco-suppressor miR-15a has been extensively documented in PDAC. Here, we identified the transcription factor Fos-related antigen-2 (Fra-2) as a miR-15a target mediating the adaptive mechanism of PDAC to nutrient deprivation. We report that the IGF1 signaling pathway was enhanced in nutrient deprived PDAC cells and that Fra-2 and IGF1R were significantly overexpressed in miR-15a downmodulated PDAC patients. Mechanistically, we discovered that miR-15a repressed IGF1R expression via Fra-2 targeting. In miR-15a-low context, IGF1R hyperactivated mTOR, modulated the autophagic flux and sustained PDAC growth in nutrient deprivation. In a genetic mouse model, Mir15aKO PDAC showed Fra-2 and Igf1r upregulation and mTOR activation in response to diet restriction. Consistently, nutrient restriction improved the efficacy of IGF1R inhibition in a Fra-2 dependent manner. Overall, our results point to a crucial role of Fra-2 in the cellular stress response due to nutrient restriction typical of pancreatic cancer and support IGF1R as a promising and vulnerable target in miR-15a downmodulated PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , MicroRNAs , Pancreatic Neoplasms , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Fos-Related Antigen-2 , Cell Line, Tumor , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , TOR Serine-Threonine Kinases , Tumor Microenvironment , Receptor, IGF Type 1/genetics
20.
BMC Bioinformatics ; 14 Suppl 7: S5, 2013.
Article in English | MEDLINE | ID: mdl-23815474

ABSTRACT

BACKGROUND: RNA Editing is a type of post-transcriptional modification that takes place in the eukaryotes. It alters the sequence of primary RNA transcripts by deleting, inserting or modifying residues. Several forms of RNA editing have been discovered including A-to-I, C-to-U, U-to-C and G-to-A. In recent years, the application of global approaches to the study of A-to-I editing, including high throughput sequencing, has led to important advances. However, in spite of enormous efforts, the real biological mechanism underlying this phenomenon remains unknown. DESCRIPTION: In this work, we present VIRGO (http://atlas.dmi.unict.it/virgo/), a web-based tool that maps Ato-G mismatches between genomic and EST sequences as candidate A-to-I editing sites. VIRGO is built on top of a knowledge-base integrating information of genes from UCSC, EST of NCBI, SNPs, DARNED, and Next Generations Sequencing data. The tool is equipped with a user-friendly interface allowing users to analyze genomic sequences in order to identify candidate A-to-I editing sites. CONCLUSIONS: VIRGO is a powerful tool allowing a systematic identification of putative A-to-I editing sites in genomic sequences. The integration of NGS data allows the computation of p-values and adjusted p-values to measure the mapped editing sites confidence. The whole knowledge base is available for download and will be continuously updated as new NGS data becomes available.


Subject(s)
RNA Editing , Software , Base Sequence , Databases, Genetic , Expressed Sequence Tags , Genomics , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL