Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Cell Rep ; 43(6): 114243, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38805398

ABSTRACT

Xeroderma pigmentosum (XP) is caused by defective nucleotide excision repair of DNA damage. This results in hypersensitivity to ultraviolet light and increased skin cancer risk, as sunlight-induced photoproducts remain unrepaired. However, many XP patients also display early-onset neurodegeneration, which leads to premature death. The mechanism of neurodegeneration is unknown. Here, we investigate XP neurodegeneration using pluripotent stem cells derived from XP patients and healthy relatives, performing functional multi-omics on samples during neuronal differentiation. We show substantially increased levels of 5',8-cyclopurine and 8-oxopurine in XP neuronal DNA secondary to marked oxidative stress. Furthermore, we find that the endoplasmic reticulum stress response is upregulated and reversal of the mutant genotype is associated with phenotypic rescue. Critically, XP neurons exhibit inappropriate downregulation of the protein clearance ubiquitin-proteasome system (UPS). Chemical enhancement of UPS activity in XP neuronal models improves phenotypes, albeit inadequately. Although more work is required, this study presents insights with intervention potential.


Subject(s)
Induced Pluripotent Stem Cells , Xeroderma Pigmentosum , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum/metabolism , Xeroderma Pigmentosum/genetics , Induced Pluripotent Stem Cells/metabolism , Humans , Neurons/metabolism , Neurons/pathology , Oxidative Stress , Endoplasmic Reticulum Stress , Proteasome Endopeptidase Complex/metabolism , Cell Differentiation , DNA Damage , Models, Biological , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL