Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Am Chem Soc ; 146(8): 5152-5161, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38350862

ABSTRACT

In photosynthesis, four electrons and four protons taken from water in photosystem II (PSII) are used to reduce NAD(P)+ to produce NAD(P)H in photosystem I (PSI), which is the most important reductant to reduce CO2. Despite extensive efforts to mimic photosynthesis, artificial photosynthesis to produce NAD(P)H using water electron and proton sources has yet to be achieved. Herein, we report the photocatalytic reduction of NAD(P)+ to NAD(P)H and its analogues in a molecular model of PSI, which is combined with water oxidation in a molecular model of PSII. Photoirradiation of a toluene/trifluoroethanol (TFE)/borate buffer aqueous solution of hydroquinone derivatives (X-QH2), 9-mesityl-10-methylacridinium ion, cobaloxime, and NAD(P)+ (PSI model) resulted in the quantitative and regioselective formation of NAD(P)H and p-benzoquinone derivatives (X-Q). X-Q was reduced to X-QH2, accompanied by the oxidation of water to dioxygen under the photoirradiation of a toluene/TFE/borate buffer aqueous solution of [(N4Py)FeII]2+ (PSII model). The PSI and PSII models were combined using two glass membranes and two liquid membranes to produce NAD(P)H using water as an electron and proton source with the turnover number (TON) of 54. To the best of our knowledge, this is the first time to achieve the stoichiometry of photosynthesis, photocatalytic reduction of NAD(P)+ by water to produce NAD(P)H and O2.

2.
Inorg Chem ; 61(49): 19735-19747, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36445726

ABSTRACT

There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.


Subject(s)
Hydrogen , Nickel , Oxygen , Electrons , Ligands , Protons
SELECTION OF CITATIONS
SEARCH DETAIL