Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Plant Cell ; 36(4): 987-1006, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37831412

ABSTRACT

Plant immunity is fine-tuned to balance growth and defense. However, little is yet known about molecular mechanisms underlying immune homeostasis in rice (Oryza sativa). In this study, we reveal that a rice calcium-dependent protein kinase (CDPK), OsCPK17, interacts with and stabilizes the receptor-like cytoplasmic kinase (RLCK) OsRLCK176, a close homolog of Arabidopsis thaliana BOTRYTIS-INDUCED KINASE 1 (AtBIK1). Oxidative burst and pathogenesis-related gene expression triggered by pathogen-associated molecular patterns are significantly attenuated in the oscpk17 mutant. The oscpk17 mutant and OsCPK17-silenced lines are more susceptible to bacterial diseases than the wild-type plants, indicating that OsCPK17 positively regulates rice immunity. Furthermore, the plant U-box (PUB) protein OsPUB12 ubiquitinates and degrades OsRLCK176. OsCPK17 phosphorylates OsRLCK176 at Ser83, which prevents the ubiquitination of OsRLCK176 by OsPUB12 and thereby enhances the stability and immune function of OsRLCK176. The phenotypes of the ospub12 mutant in defense responses and disease resistance show that OsPUB12 negatively regulates rice immunity. Therefore, OsCPK17 and OsPUB12 reciprocally maintain OsRLCK176 homeostasis and function as positive and negative immune regulators, respectively. This study uncovers positive cross talk between CDPK- and RLCK-mediated immune signaling in plants and reveals that OsCPK17, OsPUB12, and OsRLCK176 maintain rice immune homeostasis.


Subject(s)
Oryza , Oryza/metabolism , Disease Resistance , Plant Immunity/genetics , Signal Transduction/physiology , Homeostasis , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant
2.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38299379

ABSTRACT

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Subject(s)
Chitin , Flowers , Hypocreales , Oryza , Plant Diseases , Oryza/microbiology , Oryza/metabolism , Oryza/genetics , Plant Diseases/microbiology , Chitin/metabolism , Flowers/microbiology , Hypocreales/pathogenicity , Hypocreales/genetics , Hypocreales/metabolism , Signal Transduction , Host-Pathogen Interactions , Plant Proteins/metabolism , Plant Proteins/genetics , Virulence , Virulence Factors/metabolism , Virulence Factors/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics
3.
Plant Biotechnol J ; 22(5): 1198-1205, 2024 May.
Article in English | MEDLINE | ID: mdl-38410834

ABSTRACT

Plants have evolved a multi-layered immune system to fight off pathogens. However, immune activation is costly and is often associated with growth and development penalty. In crops, yield is the main breeding target and is usually affected by high disease resistance. Therefore, proper balance between growth and defence is critical for achieving efficient crop improvement. This review highlights recent advances in attempts designed to alleviate the trade-offs between growth and disease resistance in crops mediated by resistance (R) genes, susceptibility (S) genes and pleiotropic genes. We also provide an update on strategies for optimizing the growth-defence trade-offs to breed future crops with desirable disease resistance and high yield.


Subject(s)
Disease Resistance , Plant Breeding , Disease Resistance/genetics , Crops, Agricultural/genetics
4.
New Phytol ; 243(1): 362-380, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38730437

ABSTRACT

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Oryza , Oxylipins , Plant Diseases , Plant Immunity , Plant Proteins , Rhizoctonia , Salicylic Acid , Xanthomonas , Oxylipins/metabolism , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Oryza/microbiology , Oryza/genetics , Oryza/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Xanthomonas/physiology , Plant Proteins/metabolism , Plant Proteins/genetics , Rhizoctonia/physiology , Plant Immunity/drug effects , Mutation/genetics , Disease Resistance/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Protein Binding/drug effects
5.
Nucleic Acids Res ; 50(9): 5064-5079, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35524572

ABSTRACT

Many transcription factors (TFs) in animals bind to both DNA and mRNA, regulating transcription and mRNA turnover. However, whether plant TFs function at both the transcriptional and post-transcriptional levels remains unknown. The rice (Oryza sativa) bZIP TF AVRPIZ-T-INTERACTING PROTEIN 5 (APIP5) negatively regulates programmed cell death and blast resistance and is targeted by the effector AvrPiz-t of the blast fungus Magnaporthe oryzae. We demonstrate that the nuclear localization signal of APIP5 is essential for APIP5-mediated suppression of cell death and blast resistance. APIP5 directly targets two genes that positively regulate blast resistance: the cell wall-associated kinase gene OsWAK5 and the cytochrome P450 gene CYP72A1. APIP5 inhibits OsWAK5 expression and thus limits lignin accumulation; moreover, APIP5 inhibits CYP72A1 expression and thus limits reactive oxygen species production and defense compounds accumulation. Remarkably, APIP5 acts as an RNA-binding protein to regulate mRNA turnover of the cell death- and defense-related genes OsLSD1 and OsRac1. Therefore, APIP5 plays dual roles, acting as TF to regulate gene expression in the nucleus and as an RNA-binding protein to regulate mRNA turnover in the cytoplasm, a previously unidentified regulatory mechanism of plant TFs at the transcriptional and post-transcriptional levels.


Subject(s)
Oryza , Plant Proteins , Transcription Factors , Cell Death , Gene Expression Regulation, Plant , Magnaporthe , Oryza/cytology , Oryza/genetics , Oryza/metabolism , Plant Diseases/microbiology , Plant Immunity , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Plant Biotechnol J ; 21(8): 1628-1641, 2023 08.
Article in English | MEDLINE | ID: mdl-37154202

ABSTRACT

Traditional rice blast resistance breeding largely depends on utilizing typical resistance (R) genes. However, the lack of durable R genes has prompted rice breeders to find new resistance resources. Susceptibility (S) genes are potential new targets for resistance genetic engineering using genome-editing technologies, but identifying them is still challenging. Here, through the integration of genome-wide association study (GWAS) and transcriptional analysis, we identified two genes, RNG1 and RNG3, whose polymorphisms in 3'-untranslated regions (3'-UTR) affected their expression variations. These polymorphisms could serve as molecular markers to identify rice blast-resistant accessions. Editing the 3'-UTRs using CRISPR/Cas9 technology affected the expression levels of two genes, which were positively associated with rice blast susceptibility. Knocking out either RNG1 or RNG3 in rice enhanced the rice blast and bacterial blight resistance, without impacting critical agronomic traits. RNG1 and RNG3 have two major genotypes in diverse rice germplasms. The frequency of the resistance genotype of these two genes significantly increased from landrace rice to modern cultivars. The obvious selective sweep flanking RNG3 suggested it has been artificially selected in modern rice breeding. These results provide new targets for S gene identification and open avenues for developing novel rice blast-resistant materials.


Subject(s)
Genes, Plant , Oryza , Oryza/genetics , Oryza/microbiology , Genome-Wide Association Study , Gene Editing , Disease Resistance/genetics , Plant Breeding
7.
Mol Breed ; 41(12): 75, 2021 Dec.
Article in English | MEDLINE | ID: mdl-37309514

ABSTRACT

Rice blast is one of the most widespread and devastating diseases in rice production. Tremendous success has been achieved in the identification and characterization of genes and quantitative trait loci (QTLs) conferring seedling blast resistance, however, genetic studies on panicle blast resistance have lagged far behind. In this study, two advanced backcross inbred sister lines (MSJ13 and MSJ18) were obtained in the process of introducing Pigm into C134S and showed significant differences in the panicle blast resistance. One F2 population derived from the crossing MSJ13/MSJ18 was used to QTL mapping for panicle blast resistance using genotyping by sequencing (GBS) method. A total of seven QTLs were identified, including a major QTL qPBR10-1 on chromosome 10 that explains 24.21% of phenotypic variance with LOD scores of 6.62. Furthermore, qPBR10-1 was verified using the BC1F2 and BC1F3 population and narrowed to a 60.6-kb region with six candidate genes predicted, including two genes encoding exonuclease family protein, two genes encoding hypothetical protein, and two genes encoding transposon protein. The nucleotide variations and the expression patterns of the candidate genes were identified and analyzed between MSJ13 and MSJ18 through sequence comparison and RT-PCR approach, and results indicated that ORF1 and ORF2 encoding exonuclease family protein might be the causal candidate genes for panicle blast resistance in the qPBR10-1 locus. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01268-3.

8.
J Integr Plant Biol ; 63(9): 1639-1648, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34170614

ABSTRACT

Rice blast and bacterial blight are important diseases of rice (Oryza sativa) caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively. Breeding rice varieties for broad-spectrum resistance is considered the most effective and sustainable approach to controlling both diseases. Although dominant resistance genes have been extensively used in rice breeding and production, generating disease-resistant varieties by altering susceptibility (S) genes that facilitate pathogen compatibility remains unexplored. Here, using CRISPR/Cas9 technology, we generated loss-of-function mutants of the S genes Pi21 and Bsr-d1 and showed that they had increased resistance to M. oryzae. We also generated a knockout mutant of the S gene Xa5 that showed increased resistance to Xoo. Remarkably, a triple mutant of all three S genes had significantly enhanced resistance to both M. oryzae and Xoo. Moreover, the triple mutant was comparable to the wild type in regard to key agronomic traits, including plant height, effective panicle number per plant, grain number per panicle, seed setting rate, and thousand-grain weight. These results demonstrate that the simultaneous editing of multiple S genes is a powerful strategy for generating new rice varieties with broad-spectrum resistance.


Subject(s)
Disease Resistance/genetics , Gene Editing/methods , Genetic Predisposition to Disease , Host-Pathogen Interactions/genetics , Oryza/genetics , Ascomycota , Gene Knockout Techniques , Oryza/microbiology , Xanthomonas
9.
Plant Biotechnol J ; 18(6): 1376-1383, 2020 06.
Article in English | MEDLINE | ID: mdl-31742855

ABSTRACT

Because of the frequent breakdown of major resistance (R) genes, identification of new partial R genes against rice blast disease is an important goal of rice breeding. In this study, we used a core collection of the Rice Diversity Panel II (C-RDP-II), which contains 584 rice accessions and are genotyped with 700 000 single-nucleotide polymorphism (SNP) markers. The C-RDP-II accessions were inoculated with three blast strains collected from different rice-growing regions in China. Genome-wide association study identified 27 loci associated with rice blast resistance (LABRs). Among them, 22 LABRs were not associated with any known blast R genes or QTLs. Interestingly, a nucleotide-binding site leucine-rich repeat (NLR) gene cluster exists in the LABR12 region on chromosome 4. One of the NLR genes is highly conserved in multiple partially resistant rice cultivars, and its expression is significantly up-regulated at the early stages of rice blast infection. Knockout of this gene via CRISPR-Cas9 in transgenic plants partially reduced blast resistance to four blast strains. The identification of this new non-strain specific partial R gene, tentatively named rice blast Partial Resistance gene 1 (PiPR1), provides genetic material that will be useful for understanding the partial resistance mechanism and for breeding durably resistant cultivars against blast disease of rice.


Subject(s)
Magnaporthe , Oryza , China , Chromosome Mapping , Disease Resistance/genetics , Genome-Wide Association Study , Humans , Oryza/genetics , Plant Diseases/genetics
10.
Plant Biotechnol J ; 18(11): 2354-2363, 2020 11.
Article in English | MEDLINE | ID: mdl-32415911

ABSTRACT

Bowman-Birk trypsin inhibitors (BBIs) play important roles in animal and plant immunity, but how these protease inhibitors are involved in the immune system remains unclear. Here, we show that the rice (Oryza sativa) BBI protein APIP4 is a common target of a fungal effector and an NLR receptor for innate immunity. APIP4 exhibited trypsin inhibitor activity in vitro and in vivo. Knockout of APIP4 in rice enhanced susceptibility, and overexpression of APIP4 increased resistance to the fungal pathogen Magnaporthe oryzae. The M. oryzae effector AvrPiz-t interacted with APIP4 and suppressed APIP4 trypsin inhibitor activity. By contrast, the rice NLR protein Piz-t interacted with APIP4, enhancing APIP4 transcript and protein levels, and protease inhibitor activity. Our findings reveal a novel host defence mechanism in which a host protease inhibitor targeted by a fungal pathogen is protected by an NLR receptor.


Subject(s)
Magnaporthe , Oryza , NLR Proteins , Oryza/genetics , Plant Diseases , Plant Proteins/genetics , Trypsin Inhibitors
11.
PLoS Pathog ; 14(1): e1006878, 2018 01.
Article in English | MEDLINE | ID: mdl-29385213

ABSTRACT

Potassium (K+) is required by plants for growth and development, and also contributes to immunity against pathogens. However, it has not been established whether pathogens modulate host K+ signaling pathways to enhance virulence and subvert host immunity. Here, we show that the effector protein AvrPiz-t from the rice blast pathogen Magnaporthe oryzae targets a K+ channel to subvert plant immunity. AvrPiz-t interacts with the rice plasma-membrane-localized K+ channel protein OsAKT1 and specifically suppresses the OsAKT1-mediated K+ currents. Genetic and phenotypic analyses show that loss of OsAKT1 leads to decreased K+ content and reduced resistance against M. oryzae. Strikingly, AvrPiz-t interferes with the association of OsAKT1 with its upstream regulator, the cytoplasmic kinase OsCIPK23, which also plays a positive role in K+ absorption and resistance to M. oryzae. Furthermore, we show a direct correlation between blast disease resistance and external K+ status in rice plants. Together, our data present a novel mechanism by which a pathogen suppresses plant host immunity by modulating a host K+ channel.


Subject(s)
Immune Evasion , Magnaporthe/physiology , Oryza/microbiology , Potassium Channels/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Immune Evasion/genetics , Immunity, Innate/genetics , Magnaporthe/pathogenicity , Organisms, Genetically Modified , Oryza/genetics , Oryza/immunology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/microbiology , Plants, Genetically Modified , Potassium Channels/metabolism , Virulence/genetics
12.
Plant Cell ; 29(2): 345-359, 2017 02.
Article in English | MEDLINE | ID: mdl-28100706

ABSTRACT

Cullin3-based RING E3 ubiquitin ligases (CRL3), composed of Cullin3 (CUL3), RBX1, and BTB proteins, are involved in plant immunity, but the function of CUL3 in the process is largely unknown. Here, we show that rice (Oryza sativa) OsCUL3a is important for the regulation of cell death and immunity. The rice lesion mimic mutant oscul3a displays a significant increase in the accumulation of flg22- and chitin-induced reactive oxygen species, and in pathogenesis-related gene expression as well as resistance to Magnaporthe oryzae and Xanthomonas oryzae pv oryzae. We cloned the OsCUL3a gene via a map-based strategy and found that the lesion mimic phenotype of oscul3a is associated with the early termination of OsCUL3a protein. Interaction assays showed that OsCUL3a interacts with both OsRBX1a and OsRBX1b to form a multisubunit CRL in rice. Strikingly, OsCUL3a interacts with and degrades OsNPR1, which acts as a positive regulator of cell death in rice. Accumulation of OsNPR1 protein is greater in the oscul3a mutant than in the wild type. Furthermore, the oscul3a osnpr1 double mutant does not exhibit the lesion mimic phenotype of the oscul3a mutant. Our data demonstrate that OsCUL3a negatively regulates cell death and immunity by degrading OsNPR1 in rice.


Subject(s)
Oryza/genetics , Plant Proteins/physiology , Ubiquitin-Protein Ligases/physiology , Cell Death/genetics , Cloning, Molecular , Gene Knockout Techniques , Oryza/cytology , Oryza/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
13.
PLoS Pathog ; 12(3): e1005529, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27031246

ABSTRACT

Although nucleotide-binding domain, leucine-rich repeat (NLR) proteins are the major immune receptors in plants, the mechanism that controls their activation and immune signaling remains elusive. Here, we report that the avirulence effector AvrPiz-t from Magnaporthe oryzae targets the rice E3 ligase APIP10 for degradation, but that APIP10, in return, ubiquitinates AvrPiz-t and thereby causes its degradation. Silencing of APIP10 in the non-Piz-t background compromises the basal defense against M. oryzae. Conversely, silencing of APIP10 in the Piz-t background causes cell death, significant accumulation of Piz-t, and enhanced resistance to M. oryzae, suggesting that APIP10 is a negative regulator of Piz-t. We show that APIP10 promotes degradation of Piz-t via the 26S proteasome system. Furthermore, we demonstrate that AvrPiz-t stabilizes Piz-t during M. oryzae infection. Together, our results show that APIP10 is a novel E3 ligase that functionally connects the fungal effector AvrPiz-t to its NLR receptor Piz-t in rice.


Subject(s)
Oryza/microbiology , Plant Diseases/microbiology , Ubiquitin-Protein Ligases/metabolism , Magnaporthe , Oryza/enzymology , Ubiquitination/immunology
15.
Plant Cell ; 27(1): 214-27, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25616872

ABSTRACT

The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/drug effects , Gene Expression Regulation, Plant/drug effects , Plants, Genetically Modified , RING Finger Domains , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Stress, Physiological/drug effects
16.
PLoS Pathog ; 11(2): e1004629, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25658451

ABSTRACT

The ubiquitin proteasome system in plants plays important roles in plant-microbe interactions and in immune responses to pathogens. We previously demonstrated that the rice U-box E3 ligase SPL11 and its Arabidopsis ortholog PUB13 negatively regulate programmed cell death (PCD) and defense response. However, the components involved in the SPL11/PUB13-mediated PCD and immune signaling pathway remain unknown. In this study, we report that SPL11-interacting Protein 6 (SPIN6) is a Rho GTPase-activating protein (RhoGAP) that interacts with SPL11 in vitro and in vivo. SPL11 ubiquitinates SPIN6 in vitro and degrades SPIN6 in vivo via the 26S proteasome-dependent pathway. Both RNAi silencing in transgenic rice and knockout of Spin6 in a T-DNA insertion mutant lead to PCD and increased resistance to the rice blast pathogen Magnaporthe oryzae and the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. The levels of reactive oxygen species and defense-related gene expression are significantly elevated in both the Spin6 RNAi and mutant plants. Strikingly, SPIN6 interacts with the small GTPase OsRac1, catalyze the GTP-bound OsRac1 into the GDP-bound state in vitro and has GAP activity towards OsRac1 in rice cells. Together, our results demonstrate that the RhoGAP SPIN6 acts as a linkage between a U-box E3 ligase-mediated ubiquitination pathway and a small GTPase-associated defensome system for plant immunity.


Subject(s)
Cell Death/immunology , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Plant/immunology , Oryza/immunology , Plant Diseases/immunology , Plant Immunity/immunology , Apoptosis/immunology , GTP Phosphohydrolases/biosynthesis , GTP Phosphohydrolases/immunology , Immunity, Innate/immunology , Immunoprecipitation , Plant Proteins , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/biosynthesis , Ubiquitin-Protein Ligases/immunology , Ubiquitination
18.
Plant Cell ; 24(9): 3783-94, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22968716

ABSTRACT

Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.


Subject(s)
Histone Deacetylases/metabolism , Histones/metabolism , Magnaporthe/physiology , Oryza/enzymology , Plant Diseases/immunology , Xanthomonas/physiology , Acetylation , Amino Acid Sequence , Cell Nucleus/enzymology , Disease Susceptibility , Gene Expression , Gene Expression Regulation, Plant , Histone Deacetylases/genetics , Histones/genetics , Oryza/genetics , Oryza/immunology , Phenotype , Plant Diseases/microbiology , Plant Immunity , Plant Leaves , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , RNA Interference , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Time Factors
19.
Plant Cell ; 24(11): 4748-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23204406

ABSTRACT

Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.


Subject(s)
Fungal Proteins/metabolism , Magnaporthe/physiology , Oryza/immunology , Oryza/microbiology , Plant Diseases/microbiology , Ubiquitin-Protein Ligases/metabolism , Base Sequence , Biological Transport , Disease Resistance , Fungal Proteins/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Magnaporthe/pathogenicity , Oryza/genetics , Oryza/metabolism , Phenotype , Plant Diseases/immunology , Plant Leaves , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Binding , Protein Transport , Proteolysis , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Receptors, Pattern Recognition/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics
20.
Trends Plant Sci ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39232945

ABSTRACT

Plant pathogens usually secrete effectors to suppress the host immune response, resulting in effector-triggered susceptibility (ETS). Plants use nucleotide-binding leucine-rich repeat receptors (NLRs) to detect specific effectors and elicit effector-triggered immunity (ETI). Two recent papers (Liu et al. and Zhang et al.) have made promising progress in controlling rice blast by modulating ETS and ETI.

SELECTION OF CITATIONS
SEARCH DETAIL