Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 728: 150325, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38959529

ABSTRACT

RHOV and RHOU are considered atypical Rho-family small GTPases because of the existence of N- and C-terminal extension regions, abnormal GDP/GTP cycling, and post-translational modification. Particularly, RHOV and RHOU both have a proline-rich (PR) motif in the N-terminal region. It has been reported that the PR motif of RHOU interacts with GRB2, a SH3 domain-containing adaptor protein, and regulates its activity through EGF receptor signaling. However, it is unknown whether RHOV, like RHOU, interacts with SH3 domain-containing adaptor proteins. In this study, we investigated the interactions between RHOV and SH3 domain-containing adaptor proteins, including GRB2 and NCK2. The RHOV-induced serum response factor (SRF)-dependent gene transcriptional activity was attenuated in cells co-expressing either GRB2 or NCK2 compared to cells expressing RHOV alone. From the results of experiments using various gene mutants of RHOV and GRB2, it appears that the PR motif of the N-terminal region of RHOV is the crucial binding site for the SH3 domain-containing proteins. Furthermore, we found that Ser25 in the N-terminal region of RHOV is phosphorylated by PKA and that its phosphorylation is suppressed by interaction with NCK2 but not GRB2. We have found a novel regulatory mechanism for the phosphorylation of RHOV and its interaction with SH3 domain-containing adaptor proteins.

2.
J Med Genet ; 60(3): 223-232, 2023 03.
Article in English | MEDLINE | ID: mdl-35595279

ABSTRACT

BACKGROUND: RAC3 encodes a Rho family small GTPase that regulates the behaviour and organisation of actin cytoskeleton and intracellular signal transduction. Variants in RAC3 can cause a phenotypically heterogeneous neurodevelopmental disorder with structural brain anomalies and dysmorphic facies. The pathomechanism of this recently discovered genetic disorder remains unclear. METHODS: We investigated an early adolescent female with intellectual disability, drug-responsive epilepsy and white matter abnormalities. Through exome sequencing, we identified the novel de novo variant (NM_005052.3): c.83T>C (p.Phe28Ser) in RAC3. We then examined the pathophysiological significance of the p.F28S variant in comparison with the recently reported disease-causing p.Q61L variant, which results in a constitutively activated version of RAC3. RESULTS: In vitro analyses revealed that the p.F28S variant was spontaneously activated by substantially increased intrinsic GTP/GDP-exchange activity and bound to downstream effectors tested, such as PAK1 and MLK2. The variant suppressed the differentiation of primary cultured hippocampal neurons and caused cell rounding with lamellipodia. In vivo analyses using in utero electroporation showed that acute expression of the p.F28S variant caused migration defects of excitatory neurons and axon growth delay during corticogenesis. Notably, defective migration was rescued by a dominant negative version of PAK1 but not MLK2. CONCLUSION: Our results indicate that RAC3 is critical for brain development and the p.F28S variant causes morphological and functional defects in cortical neurons, likely due to the hyperactivation of PAK1.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Adolescent , Humans , Female , Gain of Function Mutation , Neurodevelopmental Disorders/genetics , Neurogenesis , Intellectual Disability/genetics , Cell Differentiation , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism
3.
J Biol Chem ; 298(2): 101579, 2022 02.
Article in English | MEDLINE | ID: mdl-35031323

ABSTRACT

Rho family small GTPases (Rho) regulate various cell motility processes by spatiotemporally controlling the actin cytoskeleton. Some Rho-specific guanine nucleotide exchange factors (RhoGEFs) are regulated via tyrosine phosphorylation by Src family tyrosine kinase (SFK). We also previously reported that PLEKHG2, a RhoGEF for the GTPases Rac1 and Cdc42, is tyrosine-phosphorylated by SRC. However, the details of the mechanisms by which SFK regulates RhoGEFs are not well understood. In this study, we found for the first time that PLEKHG1, which has very high homology to the Dbl and pleckstrin homology domains of PLEKHG2, activates Cdc42 following activation by FYN, a member of the SFK family. We also show that this activation of PLEKHG1 by FYN requires interaction between these two proteins and FYN-induced tyrosine phosphorylation of PLEKHG1. We also found that the region containing the Src homology 3 and Src homology 2 domains of FYN is required for this interaction. Finally, we demonstrated that tyrosine phosphorylation of Tyr-720 and Tyr-801 in PLEKHG1 is important for the activation of PLEKHG1. These results suggest that FYN is a regulator of PLEKHG1 and may regulate cell morphology through Rho signaling via the interaction with and tyrosine phosphorylation of PLEKHG1.


Subject(s)
Rho Guanine Nucleotide Exchange Factors , rho GTP-Binding Proteins , src-Family Kinases , Phosphorylation , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , Tyrosine/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
4.
Biochem Biophys Res Commun ; 674: 133-139, 2023 09 24.
Article in English | MEDLINE | ID: mdl-37419034

ABSTRACT

The number of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) patients persists even under nucleos(t)ide analogues (NAs) treatment. Aldo-keto reductase family 1 member B10 (AKR1B10) expression has been reported in advanced chronic liver diseases as well as cancer tissues. We observed an association between related to HCC incidence and serum AKR1B10 by analyzing patients under treatment with NAs. Serum AKR1B10 levels measured by ELISA were higher in HCC cases under NA treatment compared with non-HCC cases and were associated with lamivudine- and adefovir pivoxil-, but not entecavir- or tenofovir alafenamide-treated cases. The latter drugs did not increase AKR1B10 values even in HCC cases, suggesting that they influence the reduction of AKR1B10 in any cases. This analysis was supported by in-vitro examination, which showed reduced AKR1B10 expression by entecavir and tenofovir via immunofluorescence staining. In conclusion there was a relationship between HBV-related HCC incidence and AKR1B10 under nucleos(t)ide analogues, especially in the use of lamivudine and adefovir pivoxil, but entecavir and tenofovir had suppressive effects of AKR1B10.


Subject(s)
Aldo-Keto Reductase Family 1 member B10 , Carcinoma, Hepatocellular , Hepatitis B, Chronic , Liver Neoplasms , Humans , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/drug therapy , Liver Neoplasms/pathology , Lamivudine/therapeutic use , Carcinoma, Hepatocellular/pathology , Tenofovir , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Aldo-Keto Reductases
5.
Dev Neurosci ; 45(1): 19-26, 2023.
Article in English | MEDLINE | ID: mdl-36630934

ABSTRACT

Rho family small GTPases, such as Rho, Rac, and Cdc42, play essential roles during brain development, by regulating cellular signaling and actin cytoskeletal reorganization. Rich2/Arhgap44, a Rac- and Cdc42-specific GTPase-activating protein, has been reported to be a key regulator for dendritic spine morphology and synaptic function. Given the essential roles of Rac and Cdc42 in brain development, Rich2 is supposed to take part in brain development. However, not only the molecular mechanism involved but also the expression profile of Rich2 during neurodevelopment has not yet been elucidated. In this study, we carried out expression analyses of Rich2 by focusing on mouse brain development. In immunoblotting, Rich2 exhibited a tissue-dependent expression profile in the young adult mouse, and the expression was increased during brain development. In immunohistochemical analyses, Rich2 was observed in the cytoplasm of cortical neurons at postnatal day (P) 0 and then came to be enriched in the nucleus with moderate distribution in neuropils at P7. Later at P30, a complex immunostaining pattern of Rich2 was observed; Rich2 was distributed in the nucleus, cytoplasm, and neuropils in many cortical neurons, whereas other neurons frequently displayed little expression. In the hippocampus at P7, Rich2 was distributed mainly in the cytoplasm of excitatory neurons in the cornu ammonis regions, while it was moderately detected in the nucleus in the dentate granule cells. Notably, Rich2 was distributed in excitatory synapses of the cornu ammonis 1 region at P30. Biochemical fractionation analyses also detected Rich2 in the postsynaptic density. Taken together, Rich2 is found to be expressed in the central nervous system in a developmental stage-dependent manner and may be involved in synapse formation/maintenance in cortical neurons.


Subject(s)
GTPase-Activating Proteins , Neurons , Mice , Animals , GTPase-Activating Proteins/metabolism , Neurons/metabolism , Hippocampus/metabolism , Synapses/metabolism , Neurogenesis
6.
Brain ; 145(9): 3308-3327, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35851598

ABSTRACT

Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.


Subject(s)
Neurodevelopmental Disorders , rac GTP-Binding Proteins , Animals , Humans , Mice , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Phenotype , p21-Activated Kinases/genetics , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism
7.
Med Mol Morphol ; 56(4): 266-273, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37402055

ABSTRACT

WAC is an adaptor protein involved in gene transcription, protein ubiquitination, and autophagy. Accumulating evidence indicates that WAC gene abnormalities are responsible for neurodevelopmental disorders. In this study, we prepared anti-WAC antibody, and performed biochemical and morphological characterization focusing on mouse brain development. Western blotting analyses revealed that WAC is expressed in a developmental stage-dependent manner. In immunohistochemical analyses, while WAC was visualized mainly in the perinuclear region of cortical neurons at embryonic day 14, nuclear expression was detected in some cells. WAC then came to be enriched in the nucleus of cortical neurons after birth. When hippocampal sections were stained, nuclear localization of WAC was observed in Cornu ammonis 1 - 3 and dentate gyrus. In cerebellum, WAC was detected in the nucleus of Purkinje cells and granule cells, and possibly interneurons in the molecular layer. In primary cultured hippocampal neurons, WAC was distributed mainly in the nucleus throughout the developing process while it was also localized at perinuclear region at 3 and 7 days in vitro. Notably, WAC was visualized in Tau-1-positive axons and MAP2-positive dendrites in a time-dependent manner. Taken together, results obtained here suggest that WAC plays a crucial role during brain development.


Subject(s)
Neurodevelopmental Disorders , Neurons , Mice , Animals , Neurons/metabolism , Axons , Hippocampus/metabolism , Brain , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism
8.
J Biol Chem ; 297(6): 101427, 2021 12.
Article in English | MEDLINE | ID: mdl-34800437

ABSTRACT

CNKSR2 is a synaptic scaffolding molecule that is encoded by the CNKSR2 gene located on the X chromosome. Heterozygous mutations to CNKSR2 in humans are associated with intellectual disability and epileptic seizures, yet the cellular and molecular roles for CNKSR2 in nervous system development and disease remain poorly characterized. Here, we identify a molecular complex comprising CNKSR2 and the guanine nucleotide exchange factor (GEF) for ARF small GTPases, CYTH2, that is necessary for the proper development of granule neurons in the mouse hippocampus. Notably, we show that CYTH2 binding prevents proteasomal degradation of CNKSR2. Furthermore, to explore the functional significance of coexpression of CNKSR2 and CYTH2 in the soma of granule cells within the hippocampal dentate gyrus, we transduced mouse granule cell precursors in vivo with small hairpin RNAs (shRNAs) to silence CNKSR2 or CYTH2 expression. We found that such manipulations resulted in the abnormal localization of transduced cells at the boundary between the granule cell layer and the hilus. In both cases, CNKSR2-knockdown and CYTH2-knockdown cells exhibited characteristics of immature granule cells, consistent with their putative roles in neuron differentiation. Taken together, our results demonstrate that CNKSR2 and its molecular interaction partner CYTH2 are necessary for the proper development of dentate granule cells within the hippocampus through a mechanism that involves the stabilization of a complex comprising these proteins.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Gene Expression Regulation , Guanine Nucleotide Exchange Factors/metabolism , Hippocampus/metabolism , Neurons/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , COS Cells , Chlorocebus aethiops , Gene Knockdown Techniques , Guanine Nucleotide Exchange Factors/genetics , Humans , Mice
9.
Dev Neurosci ; 44(1): 49-58, 2022.
Article in English | MEDLINE | ID: mdl-34839287

ABSTRACT

Rac3 is a member of Rho family small GTPases which regulate cellular signaling and cytoskeletal dynamics. The RAC3 gene abnormalities have been shown to cause neurodevelopmental disorders with structural brain anomalies, including polymicrogyria/dysgyria, callosal abnormalities, brainstem anomalies, and cerebellar dysplasia. Although this evidence indicates that Rac3 is essential in brain development, not only its molecular mechanism but also the expression profile is yet to be elucidated. In this study, we carried out expression analyses of Rac3 with mouse brain tissues. In immunoblotting, Rac3 exhibited a tissue-dependent expression profile in the young adult mouse and was expressed in a developmental stage-dependent manner in brain. In primary cultured hippocampal neurons, while Rac3 was distributed mainly in the cytoplasm, it was visualized in axon and dendrites with partial localization at synapses, in consistent with the observation in biochemical fractionation analyses. In immunofluorescence analyses with brain slices, Rac3 was distributed strongly and moderately in the axon and cytoplasm, respectively, of cerebral cortex at postnatal day (P) 2 and P18. Similar distribution profile was also observed in hippocampus. Taken together, the results obtained strongly suggest that Rac3 plays an important physiological role in neuronal tissues during corticogenesis, and defects in the Rac3 function induce structural brain anomalies leading to pathogenesis of neurodevelopmental disorders.


Subject(s)
Neurons , rho GTP-Binding Proteins , Animals , Brain/metabolism , Hippocampus/metabolism , Mice , Neurons/metabolism , Synapses/metabolism , rac GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/metabolism
10.
Dev Neurosci ; 44(6): 643-650, 2022.
Article in English | MEDLINE | ID: mdl-36067731

ABSTRACT

Polo-like kinase 4 (Plk4) is a ser/thr kinase, which plays a central role in centriole duplication during the cell cycle. PLK4 gene abnormalities are responsible for autosomal recessive chorioretinopathy-microcephaly syndrome and Seckel syndrome. In this study, we performed expression analyses of Plk4 by focusing on mouse brain development. Western blotting analyses revealed that Plk4 with a molecular mass of ∼100 kDa was broadly expressed in adult mouse tissues with specific subcellular distribution. As to the central nervous system, Plk4 was expressed throughout the developmental process with drastic increase after P15, suggesting an essential role of Plk4 in differentiated neurons. In immunohistochemical analyses with mouse brain at embryonic day 14, Plk4 was detected dominantly at the cell-cell contact sites of neuronal progenitors in the ventricular zone. Plk4 was then diffusely distributed in the cell body of cortical neurons at P7, while it was enriched in the neuropil as well as soma of excitatory neurons in the cerebral cortex and hippocampus and Purkinje cells in the cerebellum at P30. Notably, biochemical fractionation analysis found an enrichment of Plk4 in the postsynaptic density fraction. Then, immunofluorescent analyses showed partial co-localization of Plk4 with excitatory synaptic markers, PSD95 and synaptophysin, in differentiated primary cultured hippocampal neurons. These results suggest that Plk4 takes part in the regulation of synaptic function in differentiated neurons.


Subject(s)
Microcephaly , Animals , Mice , Microcephaly/genetics , Cell Cycle , Cell Division , Neurons , Brain
11.
Biol Pharm Bull ; 45(10): 1503-1509, 2022.
Article in English | MEDLINE | ID: mdl-36184509

ABSTRACT

Secondary bile acids (SBAs) with high hydrophobicity are abundant in the colonic lumen. However, both aggravating and protective roles of SBAs have been proposed in the pathogenesis of inflammatory bowel diseases (IBDs). We observed that oral administration of hyodeoxycholic acid (HDCA), a hydrophilic bile acid, prevented the development of dextran sulfate sodium (DSS)-induced colitis in mice. We then examined the individual effects of DSS and HDCA as well as their combined effects on fecal bile acid profile in mice. HDCA treatment increased the levels of most of fecal bile acids, whereas DSS treatment had limited effects on the levels of fecal bile acids. The combined treatment with DSS and HDCA synergistically increased the levels of fecal chenodeoxycholic acid (CDCA) and deoxycholic acid (DCA) in feces, which are potent activators of the farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5). The overall hydrophobicity of fecal bile acids was not modified by any treatments. Our data suggest that the preventive effect of HDCA on DSS-induced colitis in mice is due to the synergism between DSS and HDCA in increasing the levels of the fecal bile acids with potencies to activate FXR and TGR5.


Subject(s)
Colitis , Animals , Bile Acids and Salts , Chenodeoxycholic Acid/adverse effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Deoxycholic Acid/adverse effects , Dextran Sulfate , Mice , Receptors, G-Protein-Coupled
12.
Dev Neurosci ; 43(1): 43-52, 2021.
Article in English | MEDLINE | ID: mdl-33794529

ABSTRACT

MED13L (mediator complex subunit 13-like) is a component of the mediator complex, which functions as a regulator for gene transcription. Since gene abnormalities in MED13L are responsible for neurodevelopmental disorders, MED13L is presumed to play an essential role in brain development. In this study, we prepared a specific antibody against MED13L, anti-MED13L, and analyzed its expression profile in mouse tissues with focusing on the central nervous system. In Western blotting, MED13L exhibited a tissue-dependent expression profile in the adult mouse and was expressed in a developmental stage-dependent manner in brain. In immunofluorescence analyses, MED13L was at least partially colocalized with pre- and post-synaptic markers, synaptophysin, and PSD95, in primary cultured hippocampal neurons. Immunohistochemical analyses revealed that MED13L was relatively highly expressed in ventricular zone surface of cerebral cortex, and was also located both in the cytoplasm and nucleus of neurons in the cortical plate at embryonic day 14. Then, MED13L showed diffuse cytoplasmic distribution throughout the cerebral cortex at the postnatal day (P) 30. In addition, MED13L appeared to be localized in cell type- and developmental stage-specific manners in the hippocampus and cerebellum. These results suggest that MED13L is involved in the development of the central nervous system and synaptic function.


Subject(s)
Neurodevelopmental Disorders , Neurons , Animals , Brain , Hippocampus , Mediator Complex/genetics , Mice , Neurodevelopmental Disorders/genetics
13.
Med Mol Morphol ; 54(2): 146-155, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492483

ABSTRACT

Abnormalities of PLEKHG2 gene, encoding a Rho family-specific guanine nucleotide exchange factor, are involved in microcephaly with intellectual disability. However, not only the role of PLEKHG2 in the developmental process but also its expression profile is unknown. In this study, we prepared a specific antibody against PLEKHG2 and carried out expression analyses with mouse tissues. In western blotting, PLEKHG2 exhibited a tissue-dependent expression profile in adult mouse and was expressed in a developmental stage-dependent manner in brain. Then, in immunohistochemical analyses, while PLEKHG2 was observed in the cortical plate and ventricular zone surface of the cerebral cortex at embryonic day 14, it came to be distributed throughout the cerebral cortex in layer II/III and V during corticogenesis. PLEKHG2 was also detected mainly in the nucleus of neurons in the hippocampal CA regions and dentate gyrus at P7. Notably, the nuclear accumulation disappeared at P30 and PLEKHG2 came to be located at the axons and/or dendrites at this time point. Moreover, in vitro immunofluorescence revealed that PLEKHG2 was at least partially localized at both excitatory and inhibitory synapses in primary cultured hippocampal neurons. These results suggest roles of PLEKHG2 in the development of the central nervous tissue and synaptic function.


Subject(s)
Brain/metabolism , Gene Expression Regulation, Developmental , Guanine Nucleotide Exchange Factors/genetics , Neurons/metabolism , Animals , Brain/growth & development , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Hippocampus/growth & development , Hippocampus/metabolism , Immunohistochemistry , Mice , Organ Specificity
14.
Nihon Shokakibyo Gakkai Zasshi ; 118(3): 264-271, 2021.
Article in Japanese | MEDLINE | ID: mdl-33692261

ABSTRACT

The patient was an 81-year-old man who presented with a complaint of hoarseness. When he was 80 years old, he had developed superficial esophageal cancer and had undergone endoscopic submucosal dissection (ESD) at our hospital. Two months after the ESD, he developed hoarseness. Computed tomography (CT) scan showed no abnormal findings at that time;therefore, he was diagnosed with idiopathic vocal cord paralysis, and followed up with symptom treatment in the Gastroenterology and Otolaryngology Departments. Ten months after the ESD, a CT scan revealed mediastinal lymph node swelling. He was admitted to our hospital for histopathological examination of the lymph node using endoscopic ultrasound-fine needle aspiration (EUS-FNA). The histopathological examination revealed squamous cell carcinoma of the lymph node, similar to the primary esophageal tumor. This result suggests that laryngeal nerve paralysis involving hoarseness is caused by lymph node metastasis of superficial esophageal cancer. We report that histopathological examination with EUS-FNA helps in determining the cause of hoarseness that develops after ESD.


Subject(s)
Endoscopic Mucosal Resection , Esophageal Neoplasms , Aged, 80 and over , Biopsy, Fine-Needle , Endoscopic Mucosal Resection/adverse effects , Endoscopic Ultrasound-Guided Fine Needle Aspiration/adverse effects , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/surgery , Hoarseness/etiology , Humans , Lymph Nodes , Male , Neoplasm Recurrence, Local
15.
Cancer Sci ; 110(4): 1364-1388, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30742728

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is the most life-threating disease among all digestive system malignancies. We developed a blood mRNA PDAC screening system using real-time detection PCR to detect the expression of 56 genes, to discriminate PDAC from noncancer subjects. We undertook a clinical study to assess the performance of the developed system. We collected whole blood RNA from 53 PDAC patients, 102 noncancer subjects, 22 patients with chronic pancreatitis, and 23 patients with intraductal papillary mucinous neoplasms in a per protocol analysis. The sensitivity of the system for PDAC diagnosis was 73.6% (95% confidence interval, 59.7%-84.7%). The specificity for noncancer volunteers, chronic pancreatitis, and patients with intraductal papillary mucinous neoplasms was 64.7% (54.6%-73.9%), 63.6% (40.7%-82.8%), and 47.8% (26.8%-69.4%), respectively. Importantly, the sensitivity of this system for both stage I and stage II PDAC was 78.6% (57.1%-100%), suggesting that detection of PDAC by the system is not dependent on the stage of PDAC. These results indicated that the screening system, relying on assessment of changes in mRNA expression in blood cells, is a viable alternative screening strategy for PDAC.


Subject(s)
Biomarkers, Tumor , Blood Cells/metabolism , Early Detection of Cancer , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , RNA, Messenger/genetics , Aged , Computational Biology/methods , Early Detection of Cancer/methods , Early Detection of Cancer/standards , Female , Gene Expression Profiling/methods , Humans , Male , Middle Aged , Molecular Sequence Annotation , Neoplasm Staging , Reproducibility of Results , Risk Factors , Sensitivity and Specificity , Pancreatic Neoplasms
16.
Mol Cell Biochem ; 459(1-2): 83-93, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31089935

ABSTRACT

It is well known that Rho family small GTPases (Rho GTPase) has a role of molecular switch in intracellular signal transduction. The switch cycle between GTP-bound and GDP-bound state of Rho GTPase regulates various cell responses such as gene transcription, cytoskeletal rearrangements, and vesicular trafficking. Rho GTPase-specific guanine nucleotide exchange factors (RhoGEFs) are regulated by various extracellular stimuli and activates Rho GTPase such as RhoA, Rac1, and Cdc42. The molecular mechanisms that regulate RhoGEFs are poorly understood. Our studies reveal that Dbl's big sister (DBS), a RhoGEF for Cdc42 and RhoA, is phosphorylated at least on tyrosine residues at 479, 660, 727, and 926 upon stimulation by SRC signaling and that the phosphorylation at Tyr-660 is particularly critical for the serum response factor (SRF)-dependent transcriptional activation of DBS by Ephrin type-B receptor 2 (EPHB2)/SRC signaling. In addition, our studies also reveal that the phosphorylation of Tyr-479 and Tyr-660 on DBS leads to the actin cytoskeletal reorganization by EPHB2/SRC signaling. These findings are thought to be useful for understanding pathological conditions related to DBS such as cancer and non-syndromic autism in future.


Subject(s)
Receptor, EphB2/metabolism , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism , src-Family Kinases/metabolism , HEK293 Cells , Humans , Receptor, EphB2/genetics , Rho Guanine Nucleotide Exchange Factors/genetics , Rho Guanine Nucleotide Exchange Factors/metabolism , cdc42 GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/genetics , src-Family Kinases/genetics
18.
J Biol Chem ; 291(48): 25227-25238, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27765816

ABSTRACT

PLEKHG2/FLJ00018 is a Gßγ-dependent guanine nucleotide exchange factor for the small GTPases Rac and Cdc42 and has been shown to mediate the signaling pathways leading to actin cytoskeleton reorganization. Here we showed that the zinc finger domain-containing protein four-and-a-half LIM domains 1 (FHL1) acts as a novel interaction partner of PLEKHG2 by the yeast two-hybrid system. Among the isoforms of FHL1 (i.e. FHL1A, FHL1B, and FHL1C), FHL1A and FHL1B interacted with PLEKHG2. We found that there was an FHL1-binding region at amino acids 58-150 of PLEKHG2. The overexpression of FHL1A but not FHL1B enhanced the PLEKHG2-induced serum response element-dependent gene transcription. The co-expression of FHL1A and Gßγ synergistically enhanced the PLEKHG2-induced serum response element-dependent gene transcription. Increased transcription activity was decreased by FHL1A knock-out with the CRISPR/Cas9 system. Compared with PLEKHG2-expressing cells, the number and length of finger-like protrusions were increased in PLEKHG2-, Gßγ-, and FHL1A-expressing cells. Our results provide evidence that FHL1A interacts with PLEKHG2 and regulates cell morphological change through the activity of PLEKHG2.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Muscle Proteins/metabolism , Serum Response Element/physiology , Transcription, Genetic/physiology , Guanine Nucleotide Exchange Factors/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Muscle Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism
19.
Am J Pathol ; 186(8): 2055-2067, 2016 08.
Article in English | MEDLINE | ID: mdl-27315779

ABSTRACT

Notch signaling abnormalities are reported to be involved in the acceleration of malignancy in solid tumors and stem cell formation or regeneration in various organs. We analyzed specific genes for DNA copy number variations in liver cancer cells and investigated whether these factors relate to clinical outcome. Chromosome 20p, which includes the ligand for Notch pathways, Jagged1, was found to be amplified in several types of hepatoma cells, and its mRNA was up-regulated according to α-fetoprotein gene expression levels. Notch inhibition using Jagged1 shRNA and γ-secretase inhibitors produced significant suppression of cell growth in α-fetoprotein-producing cells with suppression of downstream genes. Using in vivo hepatoma models, the administration of γ-secretase inhibitors resulted in reduced tumor sizes and effective Notch inhibition with widespread apoptosis and necrosis of viable tumor cells. The γ-secretase inhibitors suppressed cell growth of the epithelial cell adhesion molecule-positive fraction in hepatoma cells, indicating that Notch inhibitors could suppress the stem cell features of liver cancer cells. Even in clinical liver cancer samples, the expression of α-fetoprotein and Jagged1 showed significant correlation, and amplification of the copy number of Jagged1 was associated with Jagged1 mRNA expression and poor survival after liver cancer surgical resection. In conclusion, amplification of Jagged1 contributed to mRNA expression that activates the Jagged1-Notch signaling pathway in liver cancer and led to poor outcome.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Copy Number Variations/genetics , Jagged-1 Protein/genetics , Liver Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/mortality , Female , Humans , Kaplan-Meier Estimate , Liver Neoplasms/mortality , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
20.
Nihon Shokakibyo Gakkai Zasshi ; 111(11): 2181-9, 2014 Nov.
Article in Japanese | MEDLINE | ID: mdl-25373380

ABSTRACT

A 29-year-old man with ulcerative colitis presented to the hospital complaining of persistent back pain. Pancreatic enzymes and tumor markers were elevated; imaging showed diffuse narrowing of the main pancreatic duct associated with diffuse pancreatic enlargement. We therefore performed an endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) biopsy of the pancreas using a 19-gauge needle. Histopathology revealed interlobular fibrosis, neutrophil infiltration in the intralobular ducts and acini, and very few immunoglobulin G4-positive cells. The patient was diagnosed with type 2 autoimmune pancreatitis and started on oral steroids; subsequently, we observed an improvement in the pancreatic enlargement and duct narrowing. Histologically proven type 2 autoimmune pancreatitis is rare in Japan.


Subject(s)
Autoimmune Diseases/pathology , Pancreatitis/pathology , Adult , Autoimmune Diseases/drug therapy , Endoscopic Ultrasound-Guided Fine Needle Aspiration , Humans , Male , Multimodal Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL