Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Publication year range
1.
CA Cancer J Clin ; 73(4): 358-375, 2023.
Article in English | MEDLINE | ID: mdl-36859638

ABSTRACT

Advances in biomarker-driven therapies for patients with nonsmall cell lung cancer (NSCLC) both provide opportunities to improve the treatment (and thus outcomes) for patients and pose new challenges for equitable care delivery. Over the last decade, the continuing development of new biomarker-driven therapies and evolving indications for their use have intensified the importance of interdisciplinary communication and coordination for patients with or suspected to have lung cancer. Multidisciplinary teams are challenged with completing comprehensive and timely biomarker testing and navigating the constantly evolving evidence base for a complex and time-sensitive disease. This guide provides context for the current state of comprehensive biomarker testing for NSCLC, reviews how biomarker testing integrates within the diagnostic continuum for patients, and illustrates best practices and common pitfalls that influence the success and timeliness of biomarker testing using a series of case scenarios.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/therapy , Biomarkers, Tumor
2.
Article in English | MEDLINE | ID: mdl-39133466

ABSTRACT

RATIONALE: Some with interstitial lung abnormalities (ILA) have suspected interstitial lung disease (ILD), a subgroup with adverse outcomes. Rates of development and progression of suspected ILD and their effect on mortality are unknown. OBJECTIVES: To determine rates of development and progression of suspected ILD and assess effects of individual ILD and progression criteria on mortality. METHODS: Participants from COPDGene were included. ILD was defined as ILA and fibrosis and/or FVC <80% predicted. Prevalent ILD was assessed at enrollment, incident ILD and progression at 5-year follow-up. CT progression was assessed visually and FVC decline as relative change. Multivariable Cox regression tested associations between mortality and ILD groups. RESULTS: Of 9,588 participants at enrollment, 267 (2.8%) had prevalent ILD. Those with prevalent ILD had 52% mortality after median 10.6 years, which was higher than ILA (33%; HR=2.0; p<0.001). The subgroup of prevalent ILD with fibrosis only had worse mortality (59%) than ILA (HR=2.2; p<0.001). 97 participants with prevalent ILD completed 5-year follow-up: 32% had stable CT and relative FVC decline <10%, 6% FVC decline ≥10% only, 39% CT progression only, and 22% both CT progression and FVC decline ≥10%. Mortality rates were 32%, 50%, 45%, and 46% respectively; those with CT progression only had worse mortality than ILA (HR=2.6; p=0.005). At 5-year follow-up, incident ILD occurred in 168/4,843 participants without prevalent ILD and had worse mortality than ILA (HR=2.5; p<0.001). CONCLUSION: Rates of mortality and progression are high among those with suspected ILD in COPDGene; fibrosis and radiologic progression are important predictors of mortality.

3.
Thorax ; 79(2): 182-185, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38071573

ABSTRACT

Shortened telomere lengths (TLs) can be caused by single nucleotide polymorphisms and loss-of-function mutations in telomere-related genes (TRG), as well as ageing and lifestyle factors such as smoking. Our objective was to determine if shortened TL is associated with interstitial lung disease (ILD) in individuals with rheumatoid arthritis (RA). This is the largest study to demonstrate and replicate that shortened peripheral blood leukocytes-TL is associated with ILD in patients with RA compared with RA without ILD in a multinational cohort, and short PBL-TL was associated with baseline disease severity in RA-ILD as measured by forced vital capacity percent predicted.


Subject(s)
Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Telomere Shortening , Telomere/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/complications , Lung Diseases, Interstitial/complications , Smoking
4.
Radiology ; 312(3): e233435, 2024 09.
Article in English | MEDLINE | ID: mdl-39225600

ABSTRACT

Background It is increasingly recognized that interstitial lung abnormalities (ILAs) detected at CT have potential clinical implications, but automated identification of ILAs has not yet been fully established. Purpose To develop and test automated ILA probability prediction models using machine learning techniques on CT images. Materials and Methods This secondary analysis of a retrospective study included CT scans from patients in the Boston Lung Cancer Study collected between February 2004 and June 2017. Visual assessment of ILAs by two radiologists and a pulmonologist served as the ground truth. Automated ILA probability prediction models were developed that used a stepwise approach involving section inference and case inference models. The section inference model produced an ILA probability for each CT section, and the case inference model integrated these probabilities to generate the case-level ILA probability. For indeterminate sections and cases, both two- and three-label methods were evaluated. For the case inference model, we tested three machine learning classifiers (support vector machine [SVM], random forest [RF], and convolutional neural network [CNN]). Receiver operating characteristic analysis was performed to calculate the area under the receiver operating characteristic curve (AUC). Results A total of 1382 CT scans (mean patient age, 67 years ± 11 [SD]; 759 women) were included. Of the 1382 CT scans, 104 (8%) were assessed as having ILA, 492 (36%) as indeterminate for ILA, and 786 (57%) as without ILA according to ground-truth labeling. The cohort was divided into a training set (n = 96; ILA, n = 48), a validation set (n = 24; ILA, n = 12), and a test set (n = 1262; ILA, n = 44). Among the models evaluated (two- and three-label section inference models; two- and three-label SVM, RF, and CNN case inference models), the model using the three-label method in the section inference model and the two-label method and RF in the case inference model achieved the highest AUC, at 0.87. Conclusion The model demonstrated substantial performance in estimating ILA probability, indicating its potential utility in clinical settings. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zagurovskaya in this issue.


Subject(s)
Lung Diseases, Interstitial , Lung Neoplasms , Machine Learning , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Lung Diseases, Interstitial/diagnostic imaging , Retrospective Studies , Female , Male , Lung Neoplasms/diagnostic imaging , Aged , Middle Aged , Radiographic Image Interpretation, Computer-Assisted/methods , Boston , Lung/diagnostic imaging , Probability
5.
Am J Respir Crit Care Med ; 207(1): 60-68, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35930450

ABSTRACT

Rationale: Although interstitial lung abnormalities (ILA), specific patterns of incidentally-detected abnormal density on computed tomography, have been associated with abnormal lung function and increased mortality, it is unclear if a subset with incidental interstitial lung disease (ILD) accounts for these adverse consequences. Objectives: To define the prevalence and risk factors of suspected ILD and assess outcomes. Methods: Suspected ILD was evaluated in the COPDGene (Chronic Obstructive Pulmonary Disease Genetic Epidemiology) study, defined as ILA and at least one additional criterion: definite fibrosis on computed tomography, FVC less than 80% predicted, or DLCO less than 70% predicted. Multivariable linear, longitudinal, and Cox proportional hazards regression models were used to assess associations with St. George's Respiratory Questionnaire, 6-minute-walk test, supplemental oxygen use, respiratory exacerbations, and mortality. Measurements and Main Results: Of 4,361 participants with available data, 239 (5%) had evidence for suspected ILD, whereas 204 (5%) had ILA without suspected ILD. In multivariable analyses, suspected ILD was associated with increased St. George's Respiratory Questionnaire score (mean difference [MD], 3.9 points; 95% confidence interval [CI], 0.6-7.1; P = 0.02), reduced 6-minute-walk test (MD, -35 m; 95% CI, -56 m to -13 m; P = 0.002), greater supplemental oxygen use (odds ratio [OR], 2.3; 95% CI, 1.1-5.1; P = 0.03) and severe respiratory exacerbations (OR, 2.9; 95% CI, 1.1-7.5; P = 0.03), and higher mortality (hazard ratio, 2.4; 95% CI, 1.2-4.6; P = 0.01) compared with ILA without suspected ILD. Risk factors associated with suspected ILD included self-identified Black race (OR, 2.0; 95% CI, 1.1-3.3; P = 0.01) and pack-years smoking history (OR, 1.2; 95% CI, 1.1-1.3; P = 0.0005). Conclusions: Suspected ILD is present in half of those with ILA in COPDGene and is associated with exercise decrements and increased symptoms, supplemental oxygen use, severe respiratory exacerbations, and mortality.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Disease, Chronic Obstructive , Humans , Lung , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/genetics , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/complications , Smoking , Oxygen
6.
Am J Respir Crit Care Med ; 208(7): 791-801, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37523715

ABSTRACT

Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.


Subject(s)
Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Risk Factors , Lung , Mucin-5B/genetics , Genetic Predisposition to Disease
7.
Thorax ; 78(6): 559-565, 2023 06.
Article in English | MEDLINE | ID: mdl-35777957

ABSTRACT

BACKGROUND: Interstitial lung abnormalities (ILAs) are associated with increased mortality. It is unclear whether multimorbidity accounts for the mortality association or how strongly ILA is associated with mortality relative to other common age-associated diseases. We determined the association of ILA with all-cause mortality adjusted for multimorbidity, compared mortality associated with ILA and prevalent cardiovascular disease (CVD), diabetes mellitus, chronic kidney disease, chronic obstructive pulmonary disease and cancer and also determined the association between ILA and these diseases. METHODS: We measured ILA (none, indeterminant, definite) using blinded reads of CT images, prevalent chronic diseases and potential confounders in two observational cohorts, the Framingham Heart Study (FHS) (n=2449) and Age, Gene/Environment Susceptibility - Reykjavik Study (AGES-Reykjavik) (n=5180). We determined associations with mortality using Cox proportional hazards models and between ILA and diseases with multinomial logistic regression. RESULTS: Over a median (IQR) follow-up of 8.8 (1.4) years in FHS and 12.0 (7.7) years in AGES-Reykjavik, in adjusted models, ILAs were significantly associated with increased mortality (HR, 95% CI 1.95, 1.23 to 3.08, p=0.0042, in FHS; HR 1.60, 1.41 to 1.82, p<0.0001, in AGES-Reykjavik) adjusted for multimorbidity. In both cohorts, the association of ILA with mortality was of similar magnitude to the association of most other diseases. In adjusted models, ILAs were associated only with prevalent kidney disease (OR, 95% CI 1.90, 1.01 to 3.57, p=0.0452) in FHS and with prevalent CVD (OR 1.42, 1.12 to 1.81, p=0.0040) in AGES-Reykjavik. CONCLUSIONS: ILAs were associated with mortality adjusted for multimorbidity and were similarly associated with increased mortality compared with several common chronic diseases. ILAs were not consistently associated with the prevalence of these diseases themselves.


Subject(s)
Cardiovascular Diseases , Lung Diseases, Interstitial , Humans , Cohort Studies , Lung Diseases, Interstitial/epidemiology , Multimorbidity , Tomography, X-Ray Computed/methods , Lung
8.
Rheumatology (Oxford) ; 62(SI3): SI286-SI295, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37871923

ABSTRACT

OBJECTIVE: To investigate the prevalence and mortality impact of interstitial lung abnormalities (ILAs) in RA and non-RA comparators. METHODS: We analysed associations between ILAs, RA, and mortality in COPDGene, a multicentre prospective cohort study of current and past smokers, excluding known interstitial lung disease (ILD) or bronchiectasis. All participants had research chest high-resolution CT (HRCT) reviewed by a sequential reading method to classify ILA as present, indeterminate or absent. RA cases were identified by self-report RA and DMARD use; non-RA comparators had neither an RA diagnosis nor used DMARDs. We examined the association and mortality risk of RA and ILA using multivariable logistic regression and Cox regression. RESULTS: We identified 83 RA cases and 8725 non-RA comparators with HRCT performed for research purposes. ILA prevalence was 16.9% in RA cases and 5.0% in non-RA comparators. After adjusting for potential confounders, including genetics, current/past smoking and other lifestyle factors, ILAs were more common among those with RA compared with non-RA [odds ratio 4.76 (95% CI 2.54, 8.92)]. RA with ILAs or indeterminate for ILAs was associated with higher all-cause mortality compared with non-RA without ILAs [hazard ratio (HR) 3.16 (95% CI 2.11, 4.74)] and RA cases without ILA [HR 3.02 (95% CI 1.36, 6.75)]. CONCLUSIONS: In this cohort of smokers, RA was associated with ILAs and this persisted after adjustment for current/past smoking and genetic/lifestyle risk factors. RA with ILAs in smokers had a 3-fold increased all-cause mortality, emphasizing the importance of further screening and treatment strategies for preclinical ILD in RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Prospective Studies , Smokers , Prevalence , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/etiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Lung
9.
Eur Radiol ; 33(10): 7284-7293, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37099174

ABSTRACT

OBJECTIVES: The study investigated tumor burden dynamics on computed tomography (CT) scans in patients with advanced non-small-cell lung cancer (NSCLC) during first-line pembrolizumab plus chemotherapy, to provide imaging markers for overall survival (OS). METHODS: The study included 133 patients treated with first-line pembrolizumab plus platinum-doublet chemotherapy. Serial CT scans during therapy were assessed for tumor burden dynamics during therapy, which were studied for the association with OS. RESULTS: There were 67 responders, with overall response rate of 50%. The tumor burden change at the best overall response ranged from - 100.0% to + 132.1% (median of - 30%). Higher response rates were associated with younger age (p < 0.001) and higher programmed cell death-1 (PD-L1) expression levels (p = 0.01). Eighty-three patients (62%) showed tumor burden below the baseline burden throughout therapy. Using an 8-week landmark analysis, OS was longer in patients with tumor burden below the baseline burden in the first 8 weeks than in those who experienced ≥ 0% increase (median OS: 26.8 vs. 7.6 months, hazard ratio (HR): 0.36, p < 0.001). Tumor burden remained below their baseline throughout therapy was associated with significantly reduced hazards of death (HR: 0.72, p = 0.03) in the extended Cox models, after adjusting for other clinical variables. Pseudoprogression was noted in only one patient (0.8%). CONCLUSIONS: Tumor burden staying below the baseline burden throughout the therapy was predictive of prolonged overall survival in patients with advanced NSCLC treated with first-line pembrolizumab plus chemotherapy, and may be used as a practical marker for therapeutic decisions in this widely used combination regimen. CLINICAL RELEVANCE STATEMENT: The analysis of tumor burden dynamics on serial CT scans in reference to the baseline burden can provide an additional objective guide for treatment decision making in patients treated with first-line pembrolizumab plus chemotherapy for their advanced NSCLC. KEY POINTS: • Tumor burden remaining below baseline burden during therapy predicted longer survival during first-line pembrolizumab plus chemotherapy. • Pseudoprogression was noted in 0.8%, demonstrating the rarity of the phenomenon. • Tumor burden dynamics may serve as an objective marker for treatment benefit to guide treatment decisions during first-line pembrolizumab plus chemotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
10.
J Comput Assist Tomogr ; 47(4): 590-597, 2023.
Article in English | MEDLINE | ID: mdl-36944140

ABSTRACT

OBJECTIVE: This study aimed to investigate clinical and radiologic characteristics of lung cancer in lung transplant recipients and evaluate the treatment course and prognosis. METHODS: The study included 448 patients who underwent lung transplant between 2005 and 2021. All patients had pretransplant chest computed tomography (CT), 429 patients had posttransplant CT, whereas 19 had no posttransplant CT (median number of posttransplant CT, 6; range, 0-24). Medical records of these patients were reviewed to identify patients who developed lung cancer after lung transplant. Computed tomography and positron emission tomography/CT at the time of lung cancer diagnoses were reviewed to obtain imaging features. Demographics, tumor histology, stages, and survival were compared using Fisher exact test and Wilcoxon rank sum test. RESULTS: Among 448 lung transplant recipients with a median follow-up of 71.3 months after lung transplant, 15 patients (3.3%) developed posttransplant lung cancer (13 unilateral, 2 bilateral; 10 men, 5 women; median age, 63.1 years; median time from transplantation to cancer diagnosis, 3.1 years). Twelve cancers were in native lung, and 3 were in transplanted lung. The incidence of lung cancer was higher in single lung transplant recipients than in bilateral lung transplant recipients (10.3% vs 0.6%, respectively; P < 0.0001). Imaging manifestations varied according to tumor stages. Among 12 patients treated for lung cancer, 2 patients developed posttreatment acute respiratory distress syndrome. The median survival from cancer diagnosis of cancer was 6.2 months. CONCLUSIONS: Posttransplant lung cancer was noted in 3% of lung transplant recipients and was more common in unilateral transplant recipients. The prognosis upon diagnosis was poor with rapid clinical deterioration and serious posttreatment complications.


Subject(s)
Lung Neoplasms , Lung Transplantation , Male , Humans , Female , Middle Aged , Transplant Recipients , Retrospective Studies , Lung/pathology , Treatment Outcome , Lung Transplantation/adverse effects , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Risk Factors
11.
Thorax ; 77(10): 1041-1044, 2022 10.
Article in English | MEDLINE | ID: mdl-35907639

ABSTRACT

Although interstitial lung disease (ILD) causes significant morbidity and mortality in rheumatoid arthritis (RA), it is difficult to predict the development or progression of ILD, emphasising the need for improved discovery through minimally invasive diagnostic tests. Aptamer-based proteomic profiling was used to assess 1321 proteins from 159 patients with rheumatoid arthritis with interstitial lung disease (RA-ILD), RA without ILD, idiopathic pulmonary fibrosis and healthy controls. Differential expression and gene set enrichment analyses revealed molecular signatures that are strongly associated with the presence and severity of RA-ILD and provided insight into unexplored pathways of disease. These warrant further study as non-invasive diagnostic tools and future therapeutic targets.


Subject(s)
Arthritis, Rheumatoid , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Proteomics , Lung Diseases, Interstitial/complications , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/complications , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/complications
12.
Radiology ; 305(3): 512-525, 2022 12.
Article in English | MEDLINE | ID: mdl-36283111

ABSTRACT

Small cell lung cancer (SCLC) is a highly aggressive malignancy with exceptionally poor prognosis, comprising approximately 15% of lung cancers. Emerging knowledge of the molecular and genomic landscape of SCLC and recent successful clinical applications of new systemic agents have allowed for precision oncology treatment approaches. Imaging is essential for the diagnosis, staging, and treatment monitoring of patients with SCLC. The role of imaging is increasing with the approval of new treatment agents, including immune checkpoint inhibitors, which lead to novel imaging manifestations of response and toxicities. The purpose of this state-of-the-art review is to provide the reader with the latest information about SCLC, focusing on the subtyping of this malignancy (molecular characterization) and the emerging systemic therapeutic approaches and their implications for imaging. The review will also discuss the future directions of SCLC imaging, radiomics and machine learning.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/drug therapy , Precision Medicine/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Immunotherapy/methods
13.
Radiology ; 304(3): 694-701, 2022 09.
Article in English | MEDLINE | ID: mdl-35638925

ABSTRACT

Background The clinical impact of interstitial lung abnormalities (ILAs) on poor prognosis has been reported in many studies, but risk stratification in ILA will contribute to clinical practice. Purpose To investigate the association of traction bronchiectasis/bronchiolectasis index (TBI) with mortality and clinical outcomes in individuals with ILA by using the COPDGene cohort. Materials and Methods This study was a secondary analysis of prospectively collected data. Chest CT scans of participants with ILA for traction bronchiectasis/bronchiolectasis were evaluated and outcomes were compared with participants without ILA from the COPDGene study (January 2008 to June 2011). TBI was classified as follows: TBI-0, ILA without traction bronchiectasis/bronchiolectasis; TBI-1, ILA with bronchiolectasis but without bronchiectasis or architectural distortion; TBI-2, ILA with mild to moderate traction bronchiectasis; and TBI-3, ILA with severe traction bronchiectasis and/or honeycombing. Clinical outcomes and overall survival were compared among the TBI groups and the non-ILA group by using multivariable linear regression model and Cox proportional hazards model, respectively. Results Overall, 5295 participants (median age, 59 years; IQR, 52-66 years; 2779 men) were included, and 582 participants with ILA and 4713 participants without ILA were identified. TBI groups were associated with poorer clinical outcomes such as quality of life scores in the multivariable linear regression model (TBI-0: coefficient, 3.2 [95% CI: 0.6, 5.7; P = .01]; TBI-1: coefficient, 3.3 [95% CI: 1.1, 5.6; P = .003]; TBI-2: coefficient, 7.6 [95% CI: 4.0, 11; P < .001]; TBI-3: coefficient, 32 [95% CI: 17, 48; P < .001]). The multivariable Cox model demonstrated that ILA without traction bronchiectasis (TBI-0-1) and with traction bronchiectasis (TBI-2-3) were associated with shorter overall survival (TBI-0-1: hazard ratio [HR], 1.4 [95% CI: 1.0, 1.9; P = .049]; TBI-2-3: HR, 3.8 [95% CI: 2.6, 5.6; P < .001]). Conclusion Traction bronchiectasis/bronchiolectasis was associated with poorer clinical outcomes compared with the group without interstitial lung abnormalities; TBI-2 and 3 were associated with shorter survival. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Lee and Im in this issue.


Subject(s)
Bronchiectasis , Lung Diseases , Bronchiectasis/diagnostic imaging , Humans , Male , Middle Aged , Quality of Life , Tomography, X-Ray Computed/methods , Traction
14.
Eur Respir J ; 60(2)2022 08.
Article in English | MEDLINE | ID: mdl-35115336

ABSTRACT

BACKGROUND: Interstitial lung abnormalities (ILA) share many features with idiopathic pulmonary fibrosis; however, it is not known if ILA are associated with decreased mean telomere length (MTL). METHODS: Telomere length was measured with quantitative PCR in the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) and Age Gene/Environment Susceptibility Reykjavik (AGES-Reykjavik) cohorts and Southern blot analysis was used in the Framingham Heart Study (FHS). Logistic and linear regression were used to assess the association between ILA and MTL; Cox proportional hazards models were used to assess the association between MTL and mortality. RESULTS: In all three cohorts, ILA were associated with decreased MTL. In the COPDGene and AGES-Reykjavik cohorts, after adjustment there was greater than twofold increase in the odds of ILA when comparing the shortest quartile of telomere length to the longest quartile (OR 2.2, 95% CI 1.5-3.4, p=0.0001, and OR 2.6, 95% CI 1.4-4.9, p=0.003, respectively). In the FHS, those with ILA had shorter telomeres than those without ILA (-767 bp, 95% CI 76-1584 bp, p=0.03). Although decreased MTL was associated with chronic obstructive pulmonary disease (OR 1.3, 95% CI 1.1-1.6, p=0.01) in COPDGene, the effect estimate was less than that noted with ILA. There was no consistent association between MTL and risk of death when comparing the shortest quartile of telomere length in COPDGene and AGES-Reykjavik (HR 0.82, 95% CI 0.4-1.7, p=0.6, and HR 1.2, 95% CI 0.6-2.2, p=0.5, respectively). CONCLUSION: ILA are associated with decreased MTL.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Disease, Chronic Obstructive , Humans , Lung , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/genetics , Telomere/genetics , Tomography, X-Ray Computed
15.
Respir Res ; 23(1): 157, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35715807

ABSTRACT

BACKGROUND: Interstitial lung abnormalities (ILA) are radiologic findings that may progress to idiopathic pulmonary fibrosis (IPF). Blood gene expression profiles can predict IPF mortality, but whether these same genes associate with ILA and ILA outcomes is unknown. This study evaluated if a previously described blood gene expression profile associated with IPF mortality is associated with ILA and all-cause mortality. METHODS: In COPDGene and ECLIPSE study participants with visual scoring of ILA and gene expression data, we evaluated the association of a previously described IPF mortality score with ILA and mortality. We also trained a new ILA score, derived using genes from the IPF score, in a subset of COPDGene. We tested the association with ILA and mortality on the remainder of COPDGene and ECLIPSE. RESULTS: In 1469 COPDGene (training n = 734; testing n = 735) and 571 ECLIPSE participants, the IPF score was not associated with ILA or mortality. However, an ILA score derived from IPF score genes was associated with ILA (meta-analysis of test datasets OR 1.4 [95% CI: 1.2-1.6]) and mortality (HR 1.25 [95% CI: 1.12-1.41]). Six of the 11 genes in the ILA score had discordant directions of effects compared to the IPF score. The ILA score partially mediated the effects of age on mortality (11.8% proportion mediated). CONCLUSIONS: An ILA gene expression score, derived from IPF mortality-associated genes, identified genes with concordant and discordant effects on IPF mortality and ILA. These results suggest shared, and unique biologic processes, amongst those with ILA, IPF, aging, and death.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Cohort Studies , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/genetics , Lung , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/genetics , Tomography, X-Ray Computed , Transcriptome/genetics
16.
AJR Am J Roentgenol ; 218(1): 19-27, 2022 01.
Article in English | MEDLINE | ID: mdl-33594904

ABSTRACT

Treatment-related pneumonitis represents a major challenge in oncology patients undergoing therapy, and imaging plays an essential role in detection, diagnosis, and monitoring of pneumonitis in these patients. Among various types of pneumonitis from different kinds of cancer treatments, immune checkpoint inhibitor (ICI)-related pneumonitis has been recognized as an important topic in the radiology and oncology communities since 2015, given the increasing clinical indications for ICI therapy in patients with cancer. Moreover, clinical applications of ICIs continue to advance rapidly with novel combination approaches, leading to further emerging challenges. This focused review describes the current knowledge about ICI pneumonitis and discusses several newly emerging issues involving recurrence and flare of ICI pneumonitis, as well as involving pneumonitis from new combination approaches including ICI with epidermal growth factor receptor (EGFR) inhibitors and ICI with radiotherapy. The article concludes with a summary of unmet needs in the care of patients with ICI pneumonitis as well as of future directions in the advancement of knowledge about ICI pneumonitis and patient care for ICI pneumonitis. Given the proven multifaceted value of imaging in ICI pneumonitis, radiologists will remain central in the ongoing multidisciplinary journey to further understand and overcome this challenging toxicity for patients with cancer.


Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Neoplasms/therapy , Pneumonia/diagnostic imaging , Pneumonia/etiology , Radiography/methods , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/adverse effects , Lung/diagnostic imaging , Medical Oncology , Neoplasms/immunology
17.
Radiographics ; 42(7): 1925-1939, 2022.
Article in English | MEDLINE | ID: mdl-36083805

ABSTRACT

Interstitial lung abnormality (ILA) is defined as an interstitial change detected incidentally on CT images. It is seen in 4%-9% of smokers and 2%-7% of nonsmokers. ILA has a tendency to progress with time and is associated with respiratory symptoms, decreased exercise capability, reduced pulmonary function, and increased mortality. ILAs can be classified into three subcategories: nonsubpleural, subpleural nonfibrotic, and subpleural fibrotic. In cases of ILA, clinically significant interstitial lung disease should be identified and requires clinically driven management by a pulmonologist. Risk factors for the progression of ILA include clinical elements (ie, inhalation exposures, medication use, radiation therapy, thoracic surgery, physiologic findings, and gas exchange findings) and radiologic elements (ie, basal and peripheral predominance and fibrotic findings). It is recommended that individuals with one or more clinical or radiologic risk factors for progression of ILA be actively monitored with pulmonary function testing and CT. To avoid overcalling ILA at CT, radiologists must recognize the imaging pitfalls, including centrilobular nodularity, dependent abnormality, suboptimal inspiration, osteophyte-related lesions, apical cap and pleuroparenchymal fibroelastosis-like lesions, aspiration, and infection. There is a close association between ILA and lung cancer, and many studies have reported an increased incidence of lung cancer, worse prognoses, and/or increased pulmonary complications in relation to cancer treatment in patients with ILA. ILA is considered to be an important comorbidity in patients with lung cancer. Accordingly, all radiologists involved with body CT must have sound knowledge of ILAs owing to the high prevalence and potential clinical significance of these anomalies. An overview of ILAs, including a literature review of the associations between ILAs and lung cancer, is presented. ©RSNA, 2022.


Subject(s)
Lung Diseases, Interstitial , Lung Neoplasms , Humans , Tomography, X-Ray Computed/methods , Disease Progression , Lung Neoplasms/surgery , Lung
18.
Semin Respir Crit Care Med ; 43(6): 887-898, 2022 12.
Article in English | MEDLINE | ID: mdl-36307109

ABSTRACT

Clinical applications of novel anticancer agents in the past few decades brought marked advances in cancer treatment, enabling remarkable efficacy and effectiveness; however, these novel agents are also associated with toxicities. Among various toxicities, drug-related pneumonitis is one of the major clinical challenges in the management of cancer patients. Imaging plays a key role in detection, diagnosis, and monitoring of drug-related pneumonitis during cancer treatment. In the current era of precision oncology, pneumonitis from molecular targeted therapy and immune-checkpoint inhibitors (ICI) has been recognized as an event of clinical significance. Additionally, further advances of therapeutic approaches in cancer have brought several emerging issues in diagnosis and monitoring of pneumonitis. This article will describe the computed tomography (CT) pattern-based approach for drug-related pneumonitis that has been utilized to describe the imaging manifestations of pneumonitis from novel cancer therapies. Then, we will discuss pneumonitis from representative agents of precision cancer therapy, including mammalian target of rapamycin inhibitors, epidermal growth factor receptor inhibitors, and ICI, focusing on the incidence, risk factors, and the spectrum of CT patterns. Finally, the article will address emerging challenges in the diagnosis and monitoring of pneumonitis, including pneumonitis from combination ICI and radiation therapy and from antibody conjugate therapy, as well as the overlapping imaging features of drug-related pneumonitis and coronavirus disease 2019 pneumonia. The review is designed to provide a practical overview of drug-related pneumonitis from cutting-edge cancer therapy with emphasis on the role of imaging.


Subject(s)
COVID-19 , Neoplasms , Pneumonia , Humans , Neoplasms/drug therapy , Pneumonia/chemically induced , Pneumonia/diagnostic imaging , Precision Medicine , Tomography, X-Ray Computed
19.
J Comput Assist Tomogr ; 46(6): 871-877, 2022.
Article in English | MEDLINE | ID: mdl-35995596

ABSTRACT

PURPOSE: Interstitial lung abnormalities (ILAs) represent nondependent abnormalities on chest computed tomography (CT) indicating lung parenchymal damages due to inflammation and fibrosis. Interstitial lung abnormalities have been studied as a predictor of clinical outcome in lung cancer, but not in other thoracic malignancies. The present study investigated the prevalence of ILA in patients with esophageal cancer and identified risk factors and clinical implications of ILA in these patients. METHODS: The study included 208 patients with locally advanced esophageal cancer (median age, 65.6 years; 166 males, 42 females). Interstitial lung abnormality was scored on baseline CT scans before treatment using a 3-point scale (0 = no evidence of ILA, 1 = equivocal for ILA, 2 = ILA). Clinical characteristics and overall survival were compared in patients with ILA (score 2) and others. RESULTS: An ILA was present in 14 of 208 patients (7%) with esophageal cancer on pretreatment chest CT. Patients with ILA were significantly older (median age, 69 vs 65, respectively; P = 0.011), had a higher number of pack-years of smoking ( P = 0.02), and more commonly had T4 stage disease ( P = 0.026) than patients with ILA score of 1 or 0. Interstitial lung abnormality on baseline scan was associated with a lack of surgical resection after chemoradiotherapy (7/14, 50% vs 39/194, 20% respectively; P = 0.016). Interstitial lung abnormality was not associated with overall survival (log-rank P = 0.75, Cox P = 0.613). CONCLUSIONS: An ILA was present in 7% of esophageal cancer patients, which is similar to the prevalence in general population and in smokers. Interstitial lung abnormality was strongly associated with a lack of surgical resection after chemoradiotherapy, indicating an implication of ILA in treatment selection in these patients, which can be further studied in larger cohorts.


Subject(s)
Esophageal Neoplasms , Neoplasms, Second Primary , Humans , Female , Male , Aged , Prevalence , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/epidemiology , Esophageal Neoplasms/therapy , Risk Factors , Lung
20.
Am J Respir Crit Care Med ; 203(9): 1149-1157, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33080140

ABSTRACT

Rationale: The association between aging and idiopathic pulmonary fibrosis has been established. The associations between aging-related biomarkers and interstitial lung abnormalities (ILA) have not been comprehensively evaluated.Objectives: To evaluate the associations among aging biomarkers, ILA, and all-cause mortality.Methods: In the FHS (Framingham Heart Study), we evaluated associations among plasma biomarkers (IL-6, CRP [C-reactive protein], TNFR [tumor necrosis factor α receptor II], GDF15 [growth differentiation factor 15], cystatin-C, HGBA1C [Hb A1C], insulin, IGF1 [insulin-like growth factor 1], and IGFBP1 [IGF binding protein 1] and IGFBP3]), ILA, and mortality. Causal inference analysis was used to determine whether biomarkers mediated age. GDF15 results were replicated in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) Study.Measurements and Main Results: In the FHS, there were higher odds of ILA per increase in natural log-transformed GDF15 (odds ratio [95% confidence interval], 3.4 [1.8-6.4]; P = 0.0002), TNFR (3.1 [1.6-5.8]; P = 0.004), IL-6 (1.8 [1.4-2.4]; P < 0.0001), and CRP (1.7 [1.3-2.0]; P < 0.0001). In the FHS, after adjustment for multiple comparisons, no biomarker was associated with increased mortality, but the associations of GDF15 (hazard ratio, 2.0 [1.1-3.5]; P = 0.02), TNFR (1.8 [1.0-3.3]; P = 0.05), and IGFBP1 (1.3 [1.1-1.7]; P = 0.01) approached significance. In the COPDGene Study, higher natural log-transformed GDF15 was associated with ILA (odds ratio, 8.1 [3.1-21.4]; P < 0.0001) and mortality (hazard ratio, 1.6 [1.1-2.2]; P = 0.01). Causal inference analysis showed that the association of age with ILA was mediated by IL-6 (P < 0.0001) and TNFR (P = 0.002) and was likely mediated by GDF15 (P = 0.008) in the FHS and was mediated by GDF15 (P = 0.001) in the COPDGene Study.Conclusions: Some aging-related biomarkers are associated with ILA. GDF15, in particular, may explain some of the associations among age, ILA, and mortality.


Subject(s)
Aging/blood , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/mortality , Adult , Age Factors , Aged , Biomarkers/blood , Female , Growth Differentiation Factor 15/blood , Humans , Longitudinal Studies , Lung Diseases, Interstitial/diagnosis , Male , Middle Aged , Odds Ratio , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL