Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
J Plant Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38668957

ABSTRACT

Plant cells withstand mechanical stress originating from turgor pressure by robustly maintaining the mechanical properties of the cell wall. This applies at the organ scale as well; many plant stems act as pressurized cylinders, where the epidermis is under tension and inner tissues are under compression. The clavata3 de-etiolated3 (clv3-8 det3-1) double mutant of Arabidopsis thaliana displays cracks in its stems because of a conflict between the mechanical properties of the weak epidermis and over-proliferation of inner stem tissues. In this work, we conducted three-point bending tests on various Arabidopsis thaliana mutants, including those displaying the stem cracking phenotype, to examine the differences in their mechanical properties. The clv3-8 det3-1 double mutant exhibited reduced stem stiffness, consistent with reduced differentiation due to the clv3-8 mutation. Yet, in clv3-8, stem cross-sectional area was increased associating with the increase in vascular bundle number, and stem cross-sections displayed various shapes. To uncouple the contribution of geometry and cell-wall differentiation to the mechanical properties of the whole stems, we tested the contribution of lignified fibers to stem stiffness. In order to suppress lignin deposition in stems genetically, we generated multiple higher-order mutants by crossing clv3-8 and/or det3-1 with nst1-1 nst3-1, in which lignin deposition is suppressed. Stem stiffness was reduced markedly in all nst1-1 nst3-1 mutant backgrounds. Overall, our results suggest that stem stiffness relies on the presence of differentiated, lignified, fiber tissue as well as on the alignment or spatial distribution of vascular bundles within the stem organ.

2.
Plant Cell Environ ; 46(6): 1774-1784, 2023 06.
Article in English | MEDLINE | ID: mdl-36823722

ABSTRACT

Seedlings of the parasitic plant genus Cuscuta (dodder) locate hosts by circumnutation, coil around the host near soil level and form a haustorium, establishing a primary parasitism beneath the canopy. Mature shoots elongating from the parasitic region parasitize other hosts on the upper surfaces of their canopy. Although parasitism by dodder is stimulated by blue and far-red light, and inhibited by red light, the responses to light signals during the developmental stages are not comprehensively understood. Therefore, we compared the effects of different types of light on both circumnutation and parasitism by germinating seedlings and mature shoots of Cuscuta campestris. Seedlings established parasitism under blue and far-red light, but not under red light, as has been reported repeatedly. By contrast, mature shoots exhibited coiling around the host and haustoria formation even under a red light as well as under blue and far-red light. These findings indicate that C. campestris modified its response to red light during the transition from young seedlings to mature shoots, facilitating parasitism. Light quality did not affect the circumnutation of either seedlings or mature shoots, indicating that circumnutation and the coiling movement that leads to parasitism were regulated by different environmental signals.


Subject(s)
Cuscuta , Seedlings , Cuscuta/physiology
3.
Plant Physiol ; 185(2): 491-502, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33721891

ABSTRACT

The genus Cuscuta comprises stem holoparasitic plant species with wide geographic distribution. Cuscuta spp. obtain water, nutrients, proteins, and mRNA from their host plants via a parasitic organ called the haustorium. As the haustorium penetrates into the host tissue, search hyphae elongate within the host tissue and finally connect with the host's vascular system. Invasion by Cuscuta spp. evokes various reactions within the host plant's tissues. Here, we show that, when Arabidopsis (Arabidopsis thaliana) is invaded by Cuscuta campestris, ethylene biosynthesis by the host plant promotes elongation of the parasite's search hyphae. The expression of genes encoding 1-aminocylclopropane-1-carboxylic acid (ACC) synthases, ACC SYNTHASE2 (AtACS2) and ACC SYNTHASE6 (AtACS6), was activated in the stem of Arabidopsis plants upon invasion by C. campestris. When the ethylene-deficient Arabidopsis acs octuple mutant was invaded by C. campestris, cell elongation and endoreduplication of the search hyphae were significantly reduced, and the inhibition of search hyphae growth was complemented by exogenous application of ACC. In contrast, in the C. campestris-infected Arabidopsis ethylene-insensitive mutant etr1-3, no growth inhibition of search hyphae was observed, indicating that ETHYLENE RESPONSE1-mediated ethylene signaling in the host plant is not essential for parasitism by C. campestris. Overall, our results suggest that C. campestris recognizes host-produced ethylene as a stimulatory signal for successful invasion.


Subject(s)
Arabidopsis/genetics , Cuscuta/physiology , Ethylenes/metabolism , Plant Diseases/parasitology , Plant Growth Regulators/metabolism , Signal Transduction , Arabidopsis/metabolism , Arabidopsis/parasitology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Enlargement , Cuscuta/genetics , Endoreduplication , Host-Parasite Interactions , Lyases/genetics , Lyases/metabolism , Mutation , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
4.
PLoS Biol ; 17(12): e3000560, 2019 12.
Article in English | MEDLINE | ID: mdl-31815938

ABSTRACT

Land plant shoot structures evolved a diversity of lateral organs as morphological adaptations to the terrestrial environment, with lateral organs arising independently in different lineages. Vascular plants and bryophytes (basally diverging land plants) develop lateral organs from meristems of sporophytes and gametophytes, respectively. Understanding the mechanisms of lateral organ development among divergent plant lineages is crucial for understanding the evolutionary process of morphological diversification of land plants. However, our current knowledge of lateral organ differentiation mechanisms comes almost entirely from studies of seed plants, and thus, it remains unclear how these lateral structures evolved and whether common regulatory mechanisms control the development of analogous lateral organs. Here, we performed a mutant screen in the liverwort Marchantia polymorpha, a bryophyte, which produces gametophyte axes with nonphotosynthetic scalelike lateral organs. We found that an Arabidopsis LIGHT-DEPENDENT SHORT HYPOCOTYLS 1 and Oryza G1 (ALOG) family protein, named M. polymorpha LATERAL ORGAN SUPRESSOR 1 (MpLOS1), regulates meristem maintenance and lateral organ development in Marchantia. A mutation in MpLOS1, preferentially expressed in lateral organs, induces lateral organs with misspecified identity and increased cell number and, furthermore, causes defects in apical meristem maintenance. Remarkably, MpLOS1 expression rescued the elongated spikelet phenotype of a MpLOS1 homolog in rice. This suggests that ALOG genes regulate the development of lateral organs in both gametophyte and sporophyte shoots by repressing cell divisions. We propose that the recruitment of ALOG-mediated growth repression was in part responsible for the convergent evolution of independently evolved lateral organs among highly divergent plant lineages, contributing to the morphological diversification of land plants.


Subject(s)
Meristem/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Arabidopsis/genetics , Biological Evolution , Evolution, Molecular , Gene Expression Regulation, Plant/genetics , Meristem/genetics , Meristem/growth & development , Oryza/genetics , Phenotype , Phylogeny , Plant Proteins/metabolism , Plant Shoots/growth & development , Plants/genetics , Plants, Genetically Modified/metabolism
5.
Plant Cell Physiol ; 62(12): 1874-1889, 2021 Dec 27.
Article in English | MEDLINE | ID: mdl-34197607

ABSTRACT

All land plants encode large multigene families of xyloglucan endotransglucosylase/hydrolases (XTHs), plant-specific enzymes that cleave and reconnect plant cell-wall polysaccharides. Despite the ubiquity of these enzymes, considerable uncertainty remains regarding the evolutionary history of the XTH family. Phylogenomic and comparative analyses in this study traced the non-plant origins of the XTH family to Alphaproteobacteria ExoKs, bacterial enzymes involved in loosening biofilms, rather than Firmicutes licheninases, plant biomass digesting enzymes, as previously supposed. The relevant horizontal gene transfer (HGT) event was mapped to the divergence of non-swimming charophycean algae in the Cryogenian geological period. This HGT event was the likely origin of charophycean EG16-2s, which are putative intermediates between ExoKs and XTHs. Another HGT event in the Cryogenian may have led from EG16-2s or ExoKs to fungal Congo Red Hypersensitive proteins (CRHs) to fungal CRHs, enzymes that cleave and reconnect chitin and glucans in fungal cell walls. This successive transfer of enzyme-encoding genes may have supported the adaptation of plants and fungi to the ancient icy environment by facilitating their sessile lifestyles. Furthermore, several protein evolutionary steps, including coevolution of substrate-interacting residues and putative intra-family gene fusion, occurred in the land plant lineage and drove diversification of the XTH family. At least some of those events correlated with the evolutionary gain of broader substrate specificities, which may have underpinned the expansion of the XTH family by enhancing duplicated gene survival. Together, this study highlights the Precambrian evolution of life and the mode of multigene family expansion in the evolutionary history of the XTH family.


Subject(s)
Cell Wall/enzymology , Embryophyta/enzymology , Evolution, Molecular , Multigene Family , Plant Proteins/genetics , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Plant Proteins/metabolism
6.
Plant Cell Physiol ; 62(4): 641-649, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-33543762

ABSTRACT

Pectin, a component of the plant cell wall, is involved in cell adhesion and environmental adaptations. We generated OsPG-FOX rice lines with little pectin due to overexpression of the gene encoding a pectin-degrading enzyme [polygalacturonase (PG)]. Overexpression of OsPG2 in rice under weak light conditions increased the activity of PG, which increased the degradation of pectin in the cell wall, thereby reducing adhesion. Under weak light conditions, the overexpression of OsPG decreased the pectin content and cell adhesion, resulting in abnormally large intercellular gaps and facilitating invasion by the rice blast fungus. OsPG2-FOX plants had weaker mechanical properties and greater sensitivity to biotic stresses than wild-type (WT) plants. However, the expression levels of disease resistance genes in non-infected leaves of OsPG2-FOX were more than twice as high as those of the WT and the intensity of disease symptoms was reduced, compared with the WT. Under normal light conditions, overexpression of OsPG2 decreased the pectin content, but did not affect cell adhesion and sensitivity to biotic stresses. Therefore, PG plays a role in regulating intercellular adhesion and the response to biotic stresses in rice.


Subject(s)
Ascomycota/pathogenicity , Cell Wall/chemistry , Oryza/cytology , Oryza/microbiology , Pectins/chemistry , Biomechanical Phenomena , Cell Wall/genetics , Cell Wall/microbiology , Disease Resistance/genetics , Gene Expression Regulation, Plant , Host-Pathogen Interactions , Oryza/genetics , Pectins/metabolism , Plant Diseases/microbiology , Plant Leaves/cytology , Plant Leaves/genetics , Plant Leaves/microbiology , Plants, Genetically Modified , Polygalacturonase/genetics , Polygalacturonase/metabolism , Promoter Regions, Genetic , Zea mays/genetics
7.
Plant Cell Environ ; 44(3): 915-930, 2021 03.
Article in English | MEDLINE | ID: mdl-33190295

ABSTRACT

Freezing triggers extracellular ice formation leading to cell dehydration and deformation during a freeze-thaw cycle. Many plant species increase their freezing tolerance during exposure to low, non-freezing temperatures, a process termed cold acclimation. In addition, exposure to mild freezing temperatures after cold acclimation evokes a further increase in freezing tolerance (sub-zero acclimation). Previous transcriptome and proteome analyses indicate that cell wall remodelling may be particularly important for sub-zero acclimation. In the present study, we used a combination of immunohistochemical, chemical and spectroscopic analyses to characterize the cell walls of Arabidopsis thaliana and characterized a mutant in the XTH19 gene, encoding a xyloglucan endotransglucosylase/hydrolase (XTH). The mutant showed reduced freezing tolerance after both cold and sub-zero acclimation, compared to the Col-0 wild type, which was associated with differences in cell wall composition and structure. Most strikingly, immunohistochemistry in combination with 3D reconstruction of centres of rosette indicated that epitopes of the xyloglucan-specific antibody LM25 were highly abundant in the vasculature of Col-0 plants after sub-zero acclimation but absent in the XTH19 mutant. Taken together, our data shed new light on the potential roles of cell wall remodelling for the increased freezing tolerance observed after low temperature acclimation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cell Wall/physiology , Glycosyltransferases/metabolism , Acclimatization , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis Proteins/physiology , Cell Wall/metabolism , Freezing , Glycosyltransferases/physiology , Monosaccharides/metabolism , Polysaccharides/metabolism , Spectroscopy, Fourier Transform Infrared
8.
J Plant Res ; 133(3): 419-428, 2020 May.
Article in English | MEDLINE | ID: mdl-32246281

ABSTRACT

Phytoparasitic nematodes parasitize many species of rooting plants to take up nutrients, thus causing severe growth defects in the host plants. During infection, root-knot nematodes induce the formation of a characteristic hyperplastic structure called a root-knot or gall on the roots of host plants. Although many previous studies addressed this abnormal morphogenesis, the underlying mechanisms remain uncharacterized. To analyze the plant-microorganism interaction at the molecular level, we established an in vitro infection assay system using the nematode Meloidogyne incognita and the model plant Arabidopsis thaliana. Time-course mRNA-seq analyses indicated the increased levels of procambium-associated genes in the galls, suggesting that vascular stem cells play important roles in the gall formation. Conversely, genes involved in the formation of secondary cell walls were decreased in galls. A neutral sugar analysis indicated that the level of xylan, which is one of the major secondary cell wall components, was dramatically reduced in the galls. These observations were consistent with the hypothesis of a decrease in the number of highly differentiated cells and an increase in the density of undifferentiated cells lead to gall formation. Our findings suggest that phytoparasitic nematodes modulate the developmental mechanisms of the host to modify various aspects of plant physiological processes and establish a feeding site.


Subject(s)
Arabidopsis/parasitology , Cell Wall/parasitology , Nematoda/pathogenicity , Plant Diseases/parasitology , Plant Roots/parasitology , Animals , Gene Expression Regulation, Plant , Host-Parasite Interactions
9.
Plant Cell Physiol ; 58(11): 1868-1877, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29016904

ABSTRACT

Stem parasitic plants (Cuscuta spp.) develop a specialized organ called a haustorium to penetrate their hosts' stem tissues. To reach the vascular tissues of the host plant, the haustorium needs to overcome the physical barrier of the cell wall, and the parasite-host interaction via the cell wall is a critical process. However, the cell wall components responsible for the establishment of parasitic connections have not yet been identified. In this study, we investigated the spatial distribution patterns of cell wall components at a parasitic interface using parasite-host complexes of Cuscuta campestris-Arabidopsis thaliana and Cuscuta japonica-Glycine max. We focused on arabinogalactan proteins (AGPs), because AGPs accumulate in the cell walls of searching hyphae of both C. campestris and C. japonica. We found more AGPs in elongated haustoria than in pre haustoria, indicating that AGP accumulation is developmentally regulated. Using in situ hybridization, we identified five genes in C. campestris that encode hyphal-expressed AGPs that belong to the fasciclin-like AGP (FLA) family, which were named CcFLA genes. Three of the five CcFLA genes were expressed in the holdfast, which develops on the Cuscuta stem epidermis at the attachment site for the host's stem epidermis. Our results suggest that AGPs are involved in hyphal elongation and adhesion to host cells, and in the adhesion between the epidermal tissues of Cuscuta and its host.


Subject(s)
Cuscuta/cytology , Host-Parasite Interactions/physiology , Mucoproteins/metabolism , Plant Stems/metabolism , Arabidopsis/parasitology , Cell Adhesion/physiology , Cell Wall/immunology , Cell Wall/metabolism , Cuscuta/genetics , Cuscuta/metabolism , Epitopes , Gene Expression Regulation, Plant , Mucoproteins/chemistry , Mucoproteins/genetics , Plant Epidermis/cytology , Plant Epidermis/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine max/parasitology
10.
Plant Cell ; 25(4): 1355-67, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23572548

ABSTRACT

The epidermal cells of the Arabidopsis thaliana seed coat, which correspond to the second layer of the outer integument (oi2), contain large quantities of a pectic polysaccharide called mucilage within the apoplastic space beneath the outer periclinal cell wall. Immediately after seed imbibition, the mucilage is extruded and completely envelops the seed in a gel-like capsule. We found that a class III peroxidase family protein, PEROXIDASE36 (PER36), functions as a mucilage extrusion factor. Expression of PER36 occurred only in oi2 cells for a few days around the torpedo stage. A PER36-green fluorescent protein fusion was secreted into the outer cell wall in a polarized manner. per36 mutants were defective in mucilage extrusion after seed imbibition due to the failure of outer cell wall rupture, although the mutants exhibited normal monosaccharide composition of the mucilage. This abnormal phenotype of per36 was rescued by pectin solubilization, which promoted cell wall loosening. These results suggest that PER36 regulates the degradation of the outer cell wall. Taken together, this work indicates that polarized secretion of PER36 in a developmental stage-dependent manner plays a role in cell wall modification of oi2 cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Peroxidases/metabolism , Plant Mucilage/metabolism , Seeds/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Cell Wall/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunoblotting , Microscopy, Confocal , Microscopy, Electron , Mutation , Peroxidase/genetics , Peroxidase/metabolism , Peroxidases/genetics , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Seeds/growth & development , Spatio-Temporal Analysis , Time Factors
11.
Bioorg Med Chem Lett ; 26(1): 9-14, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26602280

ABSTRACT

In plant biology, calcium ions are involved in a variety of intriguing biological phenomena as a secondary messenger. However, most conventional calcium indicators are not applicable for plant cells because of the difficulty with their localization control in plant cells. We here introduce a method to monitor spatiotemporal Ca(2+) dynamics in living plant cells based on linking the synthetic calcium indicator Calcium Green-1 to a natural product-based protein ligand. In a proof-of-concept study using cultured BY-2 cells overexpressing the target protein for the ligand, the ligand-tethered probe accumulated in the cytosol and nucleus, and enabled real-time monitoring of the cytosolic and nucleus Ca(2+) dynamics under the physiological condition. The present strategy using ligand-tethered fluorescent sensors may be successfully applied to reveal the spatiotemporal dynamics of calcium ions in living plant cells.


Subject(s)
Calcium/analysis , Calcium/metabolism , Fluorescent Dyes/analysis , Nicotiana/metabolism , Spatio-Temporal Analysis , Cells, Cultured , Cytosol/chemistry , Cytosol/metabolism , Fluorescent Dyes/chemistry , Ligands , Microscopy, Fluorescence , Molecular Structure , Organic Chemicals/analysis , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Nicotiana/cytology
12.
Plant J ; 80(4): 604-14, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25182467

ABSTRACT

One week after partial incision of Arabidopsis inflorescence stems, the repair process in damaged tissue includes pith cell proliferation. Auxin is a key factor driving this process, and ANAC071, a transcription factor gene, is upregulated in the distal region of the incised stem. Here we show that XTH20 and the closely related XTH19, members of xyloglucan endotransglucosylase/hydrolases family catalyzing molecular grafting and/or hydrolysis of cell wall xyloglucans, were also upregulated in the distal part of the incised stem, similar to ANAC071. XTH19 was expressed in the proximal incision region after 3 days or after auxin application to the decapitated stem. Horizontal positioning of the plant with the incised side up resulted in decreased ProDR 5 :GUS, ANAC071, XTH20, and XTH19 expression and reduced pith cell proliferation. In incised stems of Pro35S :ANAC071-SRDX plants, expression of XTH20 and XTH19 was substantially and moderately decreased, respectively. XTH20 and XTH19 expression and pith cell proliferation were suppressed in anac071 plants and were increased in Pro35S :ANAC071 plants. Pith cell proliferation was also inhibited in the xth20xth19 double mutant. Furthermore, ANAC071 bound to the XTH20 and XTH19 promoters to induce their expression. This study revealed XTH20 and XTH19 induction by auxin via ANAC071 in the distal part of an incised stem and their involvement in cell proliferation in the tissue reunion process.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carbohydrates/chemistry , Cell Proliferation , Gene Expression Regulation, Plant , Inflorescence/genetics , Inflorescence/metabolism , Plant Stems/cytology , Plant Stems/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics
13.
Plant Cell Physiol ; 56(2): 268-76, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25392067

ABSTRACT

Poales [represented by rice (Oryza sativa L.)] in angiosperms and Equisetum (horsetails) in Pteridophytes are two major groups of heavy silicon (Si) accumulators. In rice, Si is polymerized preferentially in the epidermal cell wall, forming Si-cuticle double layers and Si-cellulose double layers beneath the cuticle. This Si layer is thought to exert various beneficial effects on the growth and development of land plants. Although the recent discovery of the influx and efflux transporters of silicic acid has shed some light on the molecular mechanisms of Si uptake and transport in rice, the mechanism underlying the final incorporation of polymerized Si into the cell wall remains elusive. Despite their phylogenetic distance, the cell walls of the two Si accumulators, Poales and Equisetum, share another common component, i.e. (1;3,1;4)-ß-D-glucan, also known as mixed-linkage glucan (MLG), a matrix polysaccharide not found in other plants. Based on this coincidence, a possible correlation between the functions of Si and MLG in the cell wall has been suggested, but no experimental evidence has been obtained in support of this functional correlation. Here, we present an analysis of the correlative action of Si and MLG on the mechanical properties of leaf blades using a transgenic rice line in which the MLG level was reduced by overexpressing EGL1, which encodes (1;3,1;4)-ß-D-glucanase. The reduction in MLG did not affect total Si accumulation, but it significantly altered the Si distribution profile and reduced the Si-dependent mechanical properties of the leaf blades, strongly suggesting a functional correlation between Si and MLG.


Subject(s)
Cell Wall/physiology , Polysaccharides/metabolism , Silicon/pharmacology , beta-Glucans/metabolism , Biomechanical Phenomena/drug effects , Cell Wall/drug effects , Cell Wall/ultrastructure , Cellulase/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plants, Genetically Modified , Time Factors
14.
Plant Cell ; 24(6): 2624-34, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22693281

ABSTRACT

Secondary cell walls, which contain lignin, have traditionally been considered essential for the mechanical strength of the shoot of land plants, whereas pectin, which is a characteristic component of the primary wall, is not considered to be involved in the mechanical support of the plant. Contradicting this conventional knowledge, loss-of-function mutant alleles of Arabidopsis thaliana PECTIN METHYLESTERASE35 (PME35), which encodes a pectin methylesterase, showed a pendant stem phenotype and an increased deformation rate of the stem, indicating that the mechanical strength of the stem was impaired by the mutation. PME35 was expressed specifically in the basal part of the inflorescence stem. Biochemical characterization showed that the activity of pectin methylesterase was significantly reduced in the basal part of the mutant stem. Immunofluorescence microscopy and immunogold electron microscopy analyses using JIM5, JIM7, and LM20 monoclonal antibodies revealed that demethylesterification of methylesterified homogalacturonans in the primary cell wall of the cortex and interfascicular fibers was suppressed in the mutant, but lignified cell walls in the interfascicular and xylary fibers were not affected. These phenotypic analyses indicate that PME35-mediated demethylesterification of the primary cell wall directly regulates the mechanical strength of the supporting tissue.


Subject(s)
Arabidopsis/physiology , Carboxylic Ester Hydrolases/metabolism , Plant Stems/cytology , Plant Stems/physiology , Arabidopsis/chemistry , Arabidopsis/cytology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Cell Wall/chemistry , Cell Wall/metabolism , Genetic Complementation Test , Inflorescence/genetics , Inflorescence/metabolism , Molecular Sequence Data , Mutation , Pectins/metabolism , Phenotype , Plant Stems/chemistry , Stress, Mechanical
15.
Ann Bot ; 114(6): 1309-18, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24363334

ABSTRACT

BACKGROUND AND AIMS: Although xyloglucans are ubiquitous in land plants, they are less abundant in Poales species than in eudicotyledons. Poales cell walls contain higher levels of ß-1,3/1,4 mixed-linked glucans and arabinoxylans than xyloglucans. Despite the relatively low level of xyloglucans in Poales, the xyloglucan endotransglucosylase/hydrolase (XTH) gene family in rice (Oryza sativa) is comparable in size to that of the eudicotyledon Arabidopsis thaliana. This raises the question of whether xyloglucan is a substrate for rice XTH gene products, whose enzyme activity remains largely uncharacterized. METHODS: This study focused on OsXTH19 (which belongs to Group IIIA of the XTH family and is specifically expressed in growing tissues of rice shoots), and two other XTHs, OsXTH11 (Group I/II) and OsXTH20 (Group IIIA), for reference, and measurements were made of the enzymatic activities of three recombinant rice XTHs, i.e. OsXTH11, OsXTH20 and OsXTH19. KEY RESULTS: All three OsXTH gene products have xyloglucan endohydrolase (XEH, EC 3·2·1·151) activity, and OsXTH11 has both XEH and xyloglucan endotransglycosylase (XET, EC 2·4·1207) activities. However, these proteins had neither hydrolase nor transglucosylase activity when glucuronoarabinoxylan or mixed-linkage glucan was used as the substrate. These results are consistent with histological observations demonstrating that pOsXTH19::GUS is expressed specifically in the vicinity of tissues where xyloglucan immunoreactivity is present. Transgenic rice lines over-expressing OsXTH19 (harbouring a Cauliflower Mosaic Virus 35S promoter::OsXTH19 cDNA construct) or with suppressed OsXTH19 expression (harbouring a pOsXTH19 RNAi construct) did not show dramatic phenotypic changes, suggesting functional redundancy and collaboration among XTH family members, as was observed in A. thaliana. CONCLUSIONS: OsXTH20 and OsXTH19 act as hydrolases exclusively on xyloglucan, while OsXTH11 exhibits both hydrolase and XET activities exclusively on xyloglucans. Phenotypic analysis of transgenic lines with altered expression of OsXTH19 suggests that OsXTH19 and related XTH(s) play redundant roles in rice growth.


Subject(s)
Cell Wall/metabolism , Glycosyltransferases/metabolism , Oryza/enzymology , Glucans/metabolism , Glycosyltransferases/genetics , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Xylans/metabolism
16.
Elife ; 122023 08 18.
Article in English | MEDLINE | ID: mdl-37594171

ABSTRACT

Reef-building corals thrive in oligotrophic environments due to their possession of endosymbiotic algae. Confined to the low pH interior of the symbiosome within the cell, the algal symbiont provides the coral host with photosynthetically fixed carbon. However, it remains unknown how carbon is released from the algal symbiont for uptake by the host. Here we show, using cultured symbiotic dinoflagellate, Breviolum sp., that decreases in pH directly accelerates the release of monosaccharides, that is, glucose and galactose, into the ambient environment. Under low pH conditions, the cell surface structures were deformed and genes related to cellulase were significantly upregulated in Breviolum. Importantly, the release of monosaccharides was suppressed by the cellulase inhibitor, glucopyranoside, linking the release of carbon to degradation of the agal cell wall. Our results suggest that the low pH signals the cellulase-mediated release of monosaccharides from the algal cell wall as an environmental response in coral reef ecosystems.


Coral reefs are known as 'treasure troves of biodiversity' because of the enormous variety of different fish, crustaceans and other marine life they support. Colonies of marine animals, known as corals, which are anchored to rocks on the sea bed, form the main structures of a coral reef. Many corals rely on partnerships with microscopic algae known as dinoflagellates for most of their energy needs. The dinoflagellates use sunlight to make sugars and other carbohydrates and they give some of these to the coral. In exchange, the coral provides a home for the dinoflagellates inside its body. The algae live inside special compartments within coral cells known as symbiosomes. These compartments have a lower pH (that is, they are more acidic) than the rest of the coral cell. Previous studies have shown that the algae release sugars into the symbiosome but it remains unclear what triggers this release and whether it only occurs when the algae are in a partnership. Ishii et al. studied a type of dinoflagellate known as Breviolum sp. that had been grown in sea water-like liquid in a laboratory. The experiments found that the alga released two sugar molecules known as glucose and galactose into its surroundings even in the absence of a host coral. Increasing the acidity of the liquid caused the alga to release more sugars and resulted in changes to some of the structures on the surface of its cells. The alga also produced an enzyme, called cellulase, to degrade the wall that normally surrounds the cell of an alga. Treating the alga with a drug that inhibits the activity of cellulase also suppressed the release of sugars from the cells. These findings suggest that when dinoflagellates enter acidic environments, like the guts of marine animals or symbiosomes inside coral cells, the decrease in pH can activate the algal cellulase enzyme, which in turn triggers the release of sugars for the coral. This research will provide a new viewpoint to those interested in how partnerships between animals and algae are sustained in marine environments. It also highlights the importance of the alga cell wall in establishing partnerships with corals. Further work will seek to clarify the precise biological mechanisms involved.


Subject(s)
Anthozoa , Cellulases , Dinoflagellida , Animals , Monosaccharides , Ecosystem , Carbon , Cell Wall , Dinoflagellida/genetics , Hydrogen-Ion Concentration
17.
J Plant Res ; 125(6): 771-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22527842

ABSTRACT

Rice (Oryza sativa L.) is a typical Si-accumulating plant and is able to accumulate Si up to >10 % of shoot dry weight. The cell wall has been reported to become thicker under Si-deficient condition. To clarify the relationship between Si accumulation and cell wall components, the physical properties of, and macromolecular components and Si content in, the pectic, hemicellulosic, and cellulosic fractions prepared from rice seedlings grown in hydroponics with or without 1.5 mM silicic acid were analyzed. In the absence of Si (the -Si condition), leaf blades drooped, but physical properties were enhanced. Sugar content in the cellulosic fraction and lignin content in the total cell wall increased under -Si condition. After histochemical staining, there was an increase in cellulose deposition in short cells and the cell layer just beneath the epidermis in the -Si condition, but no significant change in the pattern of lignin deposition. Expression of the genes involved in secondary cell wall synthesis, OsCesA4, OsCesA7, OsPAL, OsCCR1 and OsCAD6 was up-regulated under -Si condition, but expression of OsCesA1, involved in primary cell wall synthesis, did not increase. These results suggest that an increase in secondary cell wall components occurs in rice leaves to compensate for Si deficiency.


Subject(s)
Cell Wall/physiology , Oryza/physiology , Plant Leaves/physiology , Silicon/metabolism , Cell Wall/drug effects , Cell Wall/genetics , Cellulose/genetics , Cellulose/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Hydroponics/methods , Oryza/drug effects , Oryza/genetics , Pectins/genetics , Pectins/metabolism , Plant Cells/drug effects , Plant Cells/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Polysaccharides/genetics , Polysaccharides/metabolism , Seedlings/drug effects , Seedlings/physiology , Silicic Acid/pharmacology , Silicon/analysis
18.
Front Plant Sci ; 13: 904313, 2022.
Article in English | MEDLINE | ID: mdl-35873971

ABSTRACT

Haustoria of parasitic plants have evolved sophisticated traits to successfully infect host plants. The degradation and modification of host cell walls enable the haustorium to effectively invade host tissues. This study focused on two APETALA2/ETHYLENE RESPONSE FACTOR (ERF) genes and a set of the cell wall enzyme genes principally expressed during the haustorial invasion of Cuscuta campestris Yuncker. The orthogroups of the TF and cell wall enzyme genes have been implicated in the cell wall degradation and modification activities in the abscission of tomatoes, which are currently the phylogenetically closest non-parasitic model species of Cuscuta species. Although haustoria are generally thought to originate from root tissues, our results suggest that haustoria have further optimized invasion potential by recruiting regulatory modules from other biological processes.

19.
Plant J ; 64(4): 645-56, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20822502

ABSTRACT

This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi-gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi-gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue-dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte-specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte-specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non-seed plants.


Subject(s)
Bryopsida/genetics , Evolution, Molecular , Glycosyltransferases/genetics , Multigene Family , Amino Acid Sequence , Bryopsida/enzymology , Gene Expression Profiling , Genes, Plant , Glycosyltransferases/metabolism , Immunohistochemistry , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism
20.
Plant Physiol ; 154(2): 978-90, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20688978

ABSTRACT

Some plants can avoid shaded conditions via rapid shoot elongation, thus growing into better lit areas in a canopy. Cell wall-modifying mechanisms promoting this elongation response, therefore, are important regulatory points during shade avoidance. Two major cell wall-modifying protein families are expansins and xyloglucan endotransglucosylase/hydrolases (XTHs). The role of these proteins during shade avoidance was studied in Arabidopsis (Arabidopsis thaliana). In response to two shade cues, low red to far-red light (implying neighbor proximity) and green shade (mimicking dense canopy conditions), Arabidopsis showed classic shade avoidance features: petiole elongation and leaf hyponasty. Measurement of the apoplastic proton flux in green shade-treated petioles revealed a rapid efflux of protons into the apoplast within minutes, unlike white light controls. This apoplastic acidification probably provides the acidic pH required for the optimal activity of cell wall-modifying proteins like expansins and XTHs. Acid-induced extension, expansin susceptibility, and extractable expansin activity were similar in petioles from white light- and shade-treated plants. XTH activity, however, was high in petioles exposed to shade treatments. Five XTH genes (XTH9, -15, -16, -17, and -19) were positively regulated by low red to far-red light conditions, while the latter four and XTH22 showed a significant up-regulation also in response to green shade. Consistently, knockout mutants for two of these XTH genes also had reduced or absent shade avoidance responses to these light signals. These results point toward the cell wall as a vital regulatory point during shade avoidance.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cell Wall/enzymology , Glycosyltransferases/metabolism , Light , Plant Leaves/radiation effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Glycosyltransferases/genetics , Hydrogen-Ion Concentration , Mutagenesis, Insertional , Mutation , Plant Leaves/growth & development , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL