Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell ; 169(4): 610-620.e14, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28457610

ABSTRACT

Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-Barré syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.


Subject(s)
Zika Virus Infection/immunology , Zika Virus Infection/virology , Animals , Cerebrospinal Fluid/virology , Inflammation/immunology , Lower Gastrointestinal Tract/virology , Lymph Nodes/virology , Macaca mulatta , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
Nature ; 586(7830): 583-588, 2020 10.
Article in English | MEDLINE | ID: mdl-32731257

ABSTRACT

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Macaca mulatta , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Animals , COVID-19 , COVID-19 Vaccines , Disease Models, Animal , Female , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , Macaca mulatta/virology , Male , SARS-CoV-2 , Vaccination , Viral Load
3.
Nature ; 536(7617): 474-8, 2016 08 25.
Article in English | MEDLINE | ID: mdl-27355570

ABSTRACT

Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.


Subject(s)
Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology , Zika Virus/immunology , Adoptive Transfer , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Specificity , Brazil , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Gene Deletion , Humans , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Mice , Microcephaly/complications , Microcephaly/virology , Vaccines, DNA/chemistry , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, Inactivated/chemistry , Vaccines, Inactivated/genetics , Vaccines, Inactivated/immunology , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics , Zika Virus/chemistry , Zika Virus/genetics , Zika Virus Infection/complications , Zika Virus Infection/immunology
5.
J Virol ; 92(6)2018 03 15.
Article in English | MEDLINE | ID: mdl-29298888

ABSTRACT

Human and chimpanzee adenovirus vectors are being developed to circumvent preexisting antibodies against common adenovirus vectors such as Ad5. However, baseline immunity to these vectors still exists in human populations. Traditional cloning of new adenovirus vaccine vectors is a long and cumbersome process that takes 2 months or more and that requires rare unique restriction enzyme sites. Here we describe a novel, restriction enzyme-independent method for rapid cloning of new adenovirus vaccine vectors that reduces the total cloning procedure to 1 week. We developed 14 novel adenovirus vectors from rhesus monkeys that can be grown to high titers and that are immunogenic in mice. All vectors grouped with the unusual adenovirus species G and show extremely low seroprevalence in humans. Rapid cloning of novel adenovirus vectors is a promising approach for the development of new vector platforms. Rhesus adenovirus vectors may prove useful for clinical development.IMPORTANCE To overcome baseline immunity to human and chimpanzee adenovirus vectors, we developed 14 novel adenovirus vectors from rhesus monkeys. These vectors are immunogenic in mice and show extremely low seroprevalence in humans. Rhesus adenovirus vectors may prove useful for clinical development.


Subject(s)
Adenoviridae , Adenovirus Vaccines , Cloning, Molecular , Genetic Vectors , Immunogenicity, Vaccine/genetics , A549 Cells , Adenoviridae/genetics , Adenoviridae/immunology , Adenovirus Vaccines/genetics , Adenovirus Vaccines/immunology , Animals , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Macaca mulatta , Mice
6.
PLoS Pathog ; 10(5): e1004151, 2014 May.
Article in English | MEDLINE | ID: mdl-24852021

ABSTRACT

BCA2 (Rabring7, RNF115 or ZNF364) is a RING-finger E3 ubiquitin ligase that was identified as a co-factor in the restriction imposed by tetherin/BST2 on HIV-1. Contrary to the current model, in which BCA2 lacks antiviral activity in the absence of tetherin, we found that BCA2 possesses tetherin-independent antiviral activity. Here we show that the N-terminus of BCA2 physically interacts with the Matrix region of HIV-1 and other retroviral Gag proteins and promotes their ubiquitination, redistribution to endo-lysosomal compartments and, ultimately, lysosomal degradation. The targeted depletion of BCA2 in tetherin-expressing and tetherin-deficient cells results in a significant increase in virus release and replication, indicating that endogenous BCA2 possesses antiviral activity. Therefore, these results indicate that BCA2 functions as an antiviral factor that targets HIV-1 Gag for degradation, impairing virus assembly and release.


Subject(s)
Antigens, CD/physiology , Lysosomes/metabolism , Proteolysis , Ubiquitin-Protein Ligases/physiology , gag Gene Products, Human Immunodeficiency Virus/metabolism , Antigens, CD/metabolism , Antiviral Agents/metabolism , Cells, Cultured , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/physiology , Gene Products, gag/metabolism , HEK293 Cells , HIV-1/physiology , Humans , Jurkat Cells , Protein Binding , Protein Interaction Domains and Motifs/physiology , Simian Immunodeficiency Virus/metabolism , Simian Immunodeficiency Virus/physiology , Ubiquitin-Protein Ligases/chemistry , Ubiquitination
7.
Plant Biotechnol J ; 11(1): 77-86, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23078126

ABSTRACT

Glucagon-like peptide (GLP-1) increases insulin secretion but is rapidly degraded (half-life: 2 min in circulation). GLP-1 analogue, exenatide (Byetta) has a longer half-life (3.3-4 h) with potent insulinotropic effects but requires cold storage, daily abdominal injections with short shelf life. Because patients with diabetes take >60 000 injections in their life time, alternative delivery methods are highly desired. Exenatide is ideal for oral delivery because insulinotropism is glucose dependent, with reduced risk of hypoglycaemia even at higher doses. Therefore, exendin-4 (EX4) was expressed as a cholera toxin B subunit (CTB)-fusion protein in tobacco chloroplasts to facilitate bioencapsulation within plant cells and transmucosal delivery in the gut via GM1 receptors present in the intestinal epithelium. The transgene integration was confirmed by PCR and Southern blot analysis. Expression level of CTB-EX4 reached up to 14.3% of total leaf protein (TLP). Lyophilization of leaf material increased therapeutic protein concentration by 12- to 24-fold, extended their shelf life up to 15 months when stored at room temperature and eliminated microbes present in fresh leaves. The pentameric structure, disulphide bonds and functionality of CTB-EX4 were well preserved in lyophilized materials. Chloroplast-derived CTB-EX4 showed increased insulin secretion similar to the commercial EX4 in beta-TC6, a mouse pancreatic cell line. Even when 5000-fold excess dose of CTB-EX4 was orally delivered, it stimulated insulin secretion similar to the intraperitoneal injection of commercial EX4 but did not cause hypoglycaemia in mice. Oral delivery of the bioencapsulated EX4 should eliminate injections, increase patient compliance/convenience and significantly lower their cost.


Subject(s)
Blood Glucose/drug effects , Chloroplasts/genetics , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Insulin-Secreting Cells/drug effects , Nicotiana/genetics , Peptides/administration & dosage , Venoms/administration & dosage , Administration, Oral , Animals , Capsules , Drug Carriers , Exenatide , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Mice , Molecular Farming/methods , Plant Leaves , Plantibodies/administration & dosage , Plants, Genetically Modified
8.
Nat Med ; 27(10): 1718-1724, 2021 10.
Article in English | MEDLINE | ID: mdl-34621054

ABSTRACT

Human immunodeficiency virus (HIV)-1-specific broadly neutralizing monoclonal antibodies are currently under development to treat and prevent HIV-1 infection. We performed a single-center, randomized, double-blind, dose-escalation, placebo-controlled trial of a single administration of the HIV-1 V3-glycan-specific antibody PGT121 at 3, 10 and 30 mg kg-1 in HIV-uninfected adults and HIV-infected adults on antiretroviral therapy (ART), as well as a multicenter, open-label trial of one infusion of PGT121 at 30 mg kg-1 in viremic HIV-infected adults not on ART (no. NCT02960581). The primary endpoints were safety and tolerability, pharmacokinetics (PK) and antiviral activity in viremic HIV-infected adults not on ART. The secondary endpoints were changes in anti-PGT121 antibody titers and CD4+ T-cell count, and development of HIV-1 sequence variations associated with PGT121 resistance. Among 48 participants enrolled, no treatment-related serious adverse events, potential immune-mediated diseases or Grade 3 or higher adverse events were reported. The most common reactions among PGT121 recipients were intravenous/injection site tenderness, pain and headache. Absolute and relative CD4+ T-cell counts did not change following PGT121 infusion in HIV-infected participants. Neutralizing anti-drug antibodies were not elicited. PGT121 reduced plasma HIV RNA levels by a median of 1.77 log in viremic participants, with a viral load nadir at a median of 8.5 days. Two individuals with low baseline viral loads experienced ART-free viral suppression for ≥168 days following antibody infusion, and rebound viruses in these individuals demonstrated full or partial PGT121 sensitivity. The trial met the prespecified endpoints. These data suggest that further investigation of the potential of antibody-based therapeutic strategies for long-term suppression of HIV is warranted, including in individuals off ART and with low viral load.


Subject(s)
Antiviral Agents/administration & dosage , Broadly Neutralizing Antibodies/administration & dosage , HIV Infections/drug therapy , HIV-1/drug effects , Adult , Antiretroviral Therapy, Highly Active , Antiviral Agents/immunology , Antiviral Agents/pharmacokinetics , Broadly Neutralizing Antibodies/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/virology , Double-Blind Method , Female , HIV Envelope Protein gp120/antagonists & inhibitors , HIV Envelope Protein gp120/immunology , HIV Infections/genetics , HIV Infections/pathology , HIV Infections/virology , HIV-1/pathogenicity , Humans , Male , Middle Aged , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/immunology , Placebos , Viral Load/drug effects , Viral Load/immunology , Young Adult
9.
Science ; 369(6505): 806-811, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32434945

ABSTRACT

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made the development of a vaccine a top biomedical priority. In this study, we developed a series of DNA vaccine candidates expressing different forms of the SARS-CoV-2 spike (S) protein and evaluated them in 35 rhesus macaques. Vaccinated animals developed humoral and cellular immune responses, including neutralizing antibody titers at levels comparable to those found in convalescent humans and macaques infected with SARS-CoV-2. After vaccination, all animals were challenged with SARS-CoV-2, and the vaccine encoding the full-length S protein resulted in >3.1 and >3.7 log10 reductions in median viral loads in bronchoalveolar lavage and nasal mucosa, respectively, as compared with viral loads in sham controls. Vaccine-elicited neutralizing antibody titers correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate vaccine protection against SARS-CoV-2 in nonhuman primates.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/immunology , Viral Vaccines/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/physiology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/virology , Disease Models, Animal , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunogenicity, Vaccine , Immunologic Memory , Macaca mulatta , Male , Mutant Proteins/chemistry , Mutant Proteins/immunology , Nasal Mucosa/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Protein Domains , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, DNA/administration & dosage , Viral Load , Viral Vaccines/administration & dosage
10.
Science ; 369(6505): 812-817, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32434946

ABSTRACT

An understanding of protective immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical for vaccine and public health strategies aimed at ending the global coronavirus disease 2019 (COVID-19) pandemic. A key unanswered question is whether infection with SARS-CoV-2 results in protective immunity against reexposure. We developed a rhesus macaque model of SARS-CoV-2 infection and observed that macaques had high viral loads in the upper and lower respiratory tract, humoral and cellular immune responses, and pathologic evidence of viral pneumonia. After the initial viral clearance, animals were rechallenged with SARS-CoV-2 and showed 5 log10 reductions in median viral loads in bronchoalveolar lavage and nasal mucosa compared with after the primary infection. Anamnestic immune responses after rechallenge suggested that protection was mediated by immunologic control. These data show that SARS-CoV-2 infection induced protective immunity against reexposure in nonhuman primates.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/physiology , Bronchoalveolar Lavage Fluid/virology , COVID-19 , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Female , Immunity, Cellular , Immunity, Humoral , Immunologic Memory , Lung/immunology , Lung/pathology , Lung/virology , Lung Diseases, Interstitial/immunology , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/virology , Macaca mulatta , Male , Nasal Mucosa/virology , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Recurrence , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Viral Load , Virus Replication
11.
Nat Med ; 26(11): 1694-1700, 2020 11.
Article in English | MEDLINE | ID: mdl-32884153

ABSTRACT

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


Subject(s)
Adenoviridae/genetics , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/immunology , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , COVID-19/mortality , COVID-19/pathology , COVID-19/virology , COVID-19 Vaccines/genetics , Cricetinae , Disease Models, Animal , Female , Genetic Vectors , Humans , Male , Mesocricetus , SARS-CoV-2/genetics , Severity of Illness Index , Vaccines, Synthetic/genetics , Vaccines, Synthetic/therapeutic use , Viral Load
12.
Sci Transl Med ; 9(420)2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29237759

ABSTRACT

An effective Zika virus (ZIKV) vaccine will require long-term durable protection. Several ZIKV vaccine candidates have demonstrated protective efficacy in nonhuman primates, but these studies have typically involved ZIKV challenge shortly after vaccination at peak immunity. We show that a single immunization with an adenovirus vector-based vaccine, as well as two immunizations with a purified inactivated virus vaccine, afforded robust protection against ZIKV challenge in rhesus monkeys at 1 year after vaccination. In contrast, two immunizations with an optimized DNA vaccine, which provided complete protection at peak immunity, resulted in reduced protective efficacy at 1 year that was associated with declining neutralizing antibody titers to subprotective levels. These data define a microneutralization log titer of 2.0 to 2.1 as the threshold required for durable protection against ZIKV challenge in this model. Moreover, our findings demonstrate that protection against ZIKV challenge in rhesus monkeys is possible for at least 1 year with a single-shot vaccine.


Subject(s)
Viral Vaccines/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Zika Virus/immunology , Animals , Antigens, Viral/immunology , DNA, Viral/metabolism , Female , Macaca mulatta , Mice, Inbred BALB C , Vaccination
13.
Science ; 354(6309): 237-240, 2016 10 14.
Article in English | MEDLINE | ID: mdl-27708058

ABSTRACT

Zika virus (ZIKV) was identified as a cause of congenital disease during the explosive outbreak in the Americas and Caribbean that began in 2015. Because of the ongoing fetal risk from endemic disease and travel-related exposures, a vaccine to prevent viremia in women of childbearing age and their partners is imperative. We found that vaccination with DNA expressing the premembrane and envelope proteins of ZIKV was immunogenic in mice and nonhuman primates, and protection against viremia after ZIKV challenge correlated with serum neutralizing activity. These data not only indicate that DNA vaccination could be a successful approach to protect against ZIKV infection, but also suggest a protective threshold of vaccine-induced neutralizing activity that prevents viremia after acute infection.


Subject(s)
Immunogenicity, Vaccine , Vaccines, DNA/immunology , Viral Envelope Proteins/immunology , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Female , Macaca mulatta , Male , Mice , Vaccination , Viral Envelope Proteins/genetics , Viral Load/immunology , Viremia/immunology , Viremia/prevention & control , Zika Virus/genetics , Zika Virus Infection/virology
14.
Science ; 353(6304): 1129-32, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27492477

ABSTRACT

Zika virus (ZIKV) is responsible for a major ongoing epidemic in the Americas and has been causally associated with fetal microcephaly. The development of a safe and effective ZIKV vaccine is therefore an urgent global health priority. Here we demonstrate that three different vaccine platforms protect against ZIKV challenge in rhesus monkeys. A purified inactivated virus vaccine induced ZIKV-specific neutralizing antibodies and completely protected monkeys against ZIKV strains from both Brazil and Puerto Rico. Purified immunoglobulin from vaccinated monkeys also conferred passive protection in adoptive transfer studies. A plasmid DNA vaccine and a single-shot recombinant rhesus adenovirus serotype 52 vector vaccine, both expressing ZIKV premembrane and envelope, also elicited neutralizing antibodies and completely protected monkeys against ZIKV challenge. These data support the rapid clinical development of ZIKV vaccines for humans.


Subject(s)
Immunogenicity, Vaccine , Vaccines, DNA/immunology , Viral Vaccines/immunology , Zika Virus Infection/prevention & control , Zika Virus/immunology , Adenoviridae , Adoptive Transfer , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Brazil , Female , Genetic Vectors , Humans , Immunoglobulins/immunology , Immunoglobulins/isolation & purification , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Puerto Rico , Vaccines, DNA/administration & dosage , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology , Viral Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL