Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proc Natl Acad Sci U S A ; 120(33): e2303155120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37561786

ABSTRACT

Human cytomegalovirus (HCMV) is a major human pathogen whose life-long persistence is enabled by its remarkable capacity to systematically subvert host immune defenses. In exploring the finding that HCMV infection up-regulates tumor necrosis factor receptor 2 (TNFR2), a ligand for the pro-inflammatory antiviral cytokine TNFα, we found that the underlying mechanism was due to targeting of the protease, A Disintegrin And Metalloproteinase 17 (ADAM17). ADAM17 is the prototype 'sheddase', a family of proteases that cleaves other membrane-bound proteins to release biologically active ectodomains into the supernatant. HCMV impaired ADAM17 surface expression through the action of two virally-encoded proteins in its UL/b' region, UL148 and UL148D. Proteomic plasma membrane profiling of cells infected with an HCMV double-deletion mutant for UL148 and UL148D with restored ADAM17 expression, combined with ADAM17 functional blockade, showed that HCMV stabilized the surface expression of 114 proteins (P < 0.05) in an ADAM17-dependent fashion. These included reported substrates of ADAM17 with established immunological functions such as TNFR2 and jagged1, but also numerous unreported host and viral targets, such as nectin1, UL8, and UL144. Regulation of TNFα-induced cytokine responses and NK inhibition during HCMV infection were dependent on this impairment of ADAM17. We therefore identify a viral immunoregulatory mechanism in which targeting a single sheddase enables broad regulation of multiple critical surface receptors, revealing a paradigm for viral-encoded immunomodulation.


Subject(s)
Cytomegalovirus , Tumor Necrosis Factor-alpha , Humans , Cytomegalovirus/physiology , Tumor Necrosis Factor-alpha/metabolism , Proteome/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , Proteomics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Cytokines/metabolism , Cell Membrane/metabolism , Metalloproteases/metabolism , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Membrane Glycoproteins/metabolism , Viral Proteins/metabolism
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35105802

ABSTRACT

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immune Evasion , Nuclear Proteins/immunology , Proteolysis , Viral Envelope Proteins/immunology , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Humans , Nuclear Proteins/genetics , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/immunology , Viral Envelope Proteins/genetics
3.
J Gen Virol ; 105(4)2024 04.
Article in English | MEDLINE | ID: mdl-38687323

ABSTRACT

The human cytomegalovirus (HCMV) pUS2 glycoprotein exploits the host's endoplasmic reticulum (ER)-associated degradation (ERAD) pathway to degrade major histocompatibility complex class I (MHC-I) and prevent antigen presentation. Beyond MHC-I, pUS2 has been shown to target a range of cellular proteins for degradation, preventing their cell surface expression. Here we have identified a novel pUS2 target, ER-resident protein lectin mannose binding 2 like (LMAN2L). pUS2 expression was both necessary and sufficient for the downregulation of LMAN2L, which was dependent on the cellular E3 ligase TRC8. Given the hypothesized role of LMAN2L in the trafficking of glycoproteins, we employed proteomic plasma membrane profiling to measure LMAN2L-dependent changes at the cell surface. A known pUS2 target, integrin alpha-6 (ITGA6), was downregulated from the surface of LMAN2L-deficient cells, but not other integrins. Overall, these results suggest a novel strategy of pUS2-mediated protein degradation whereby pUS2 targets LMAN2L to impair trafficking of ITGA6. Given that pUS2 can directly target other integrins, we propose that this single viral protein may exhibit both direct and indirect mechanisms to downregulate key cell surface molecules.


Subject(s)
Cytomegalovirus , Endoplasmic Reticulum , Viral Envelope Proteins , Viral Proteins , Humans , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Viral Proteins/metabolism , Viral Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Proteolysis , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Endoplasmic Reticulum-Associated Degradation , Host-Pathogen Interactions , Cell Membrane/metabolism , Cell Membrane/virology
4.
Proc Natl Acad Sci U S A ; 117(31): 18771-18779, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32690704

ABSTRACT

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of intrinsic, innate, and adaptive viral immune evasion. Here, we employed multiplexed tandem mass tag-based proteomics to characterize host proteins targeted for degradation late during HCMV infection. This approach revealed that mixed lineage kinase domain-like protein (MLKL), a key terminal mediator of cellular necroptosis, was rapidly and persistently degraded by the minimally passaged HCMV strain Merlin but not the extensively passaged strain AD169. The strain Merlin viral inhibitor of apoptosis pUL36 was necessary and sufficient both to degrade MLKL and to inhibit necroptosis. Furthermore, mutation of pUL36 Cys131 abrogated MLKL degradation and restored necroptosis. As the same residue is also required for pUL36-mediated inhibition of apoptosis by preventing proteolytic activation of procaspase-8, we define pUL36 as a multifunctional inhibitor of both apoptotic and necroptotic cell death.


Subject(s)
Apoptosis/physiology , Cytomegalovirus , Necroptosis/physiology , Viral Proteins/metabolism , Cells, Cultured , Cytomegalovirus/chemistry , Cytomegalovirus/metabolism , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/metabolism , Cytomegalovirus Infections/virology , Humans , Protein Binding , Proteolysis
5.
J Hepatol ; 75(1): 64-73, 2021 07.
Article in English | MEDLINE | ID: mdl-33516779

ABSTRACT

BACKGROUND & AIMS: Hypoxia inducible factors (HIFs) are a hallmark of inflammation and are key regulators of hepatic immunity and metabolism, yet their role in HBV replication is poorly defined. HBV replicates in hepatocytes within the liver, a naturally hypoxic organ, however most studies of viral replication are performed under conditions of atmospheric oxygen, where HIFs are inactive. We therefore investigated the role of HIFs in regulating HBV replication. METHODS: Using cell culture, animal models, human tissue and pharmacological agents inhibiting the HIF-prolyl hydroxylases, we investigated the impact of hypoxia on the HBV life cycle. RESULTS: Culturing liver cell-based model systems under low oxygen uncovered a new role for HIFs in binding HBV DNA and activating the basal core promoter, leading to increased pre-genomic RNA and de novo HBV particle secretion. The presence of hypoxia responsive elements among all primate members of the hepadnaviridae highlights an evolutionary conserved role for HIFs in regulating this virus family. CONCLUSIONS: Identifying a role for this conserved oxygen sensor in regulating HBV transcription suggests that this virus has evolved to exploit the HIF signaling pathway to persist in the low oxygen environment of the liver. Our studies show the importance of considering oxygen availability when studying HBV-host interactions and provide innovative routes to better understand and target chronic HBV infection. LAY SUMMARY: Viral replication in host cells is defined by the cellular microenvironment and one key factor is local oxygen tension. Hepatitis B virus (HBV) replicates in the liver, a naturally hypoxic organ. Hypoxia inducible factors (HIFs) are the major sensors of low oxygen; herein, we identify a new role for these factors in regulating HBV replication, revealing new therapeutic targets.


Subject(s)
Hepatitis B virus , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases , Kruppel-Like Factor 6/metabolism , Oxygen/metabolism , Virus Replication/physiology , Animals , Cellular Microenvironment , Hepadnaviridae/physiology , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/virology , Host Microbial Interactions , Humans , Hypoxia/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Liver/metabolism , Signal Transduction , Transcriptional Activation
6.
PLoS Pathog ; 15(9): e1008030, 2019 09.
Article in English | MEDLINE | ID: mdl-31518366

ABSTRACT

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with multiple human malignancies. EBV drives B-cell proliferation, which contributes to the pathogenesis of multiple lymphomas. Yet, knowledge of how EBV subverts host biosynthetic pathways to transform resting lymphocytes into activated lymphoblasts remains incomplete. Using a temporal proteomic dataset of EBV primary human B-cell infection, we identified that cholesterol and fatty acid biosynthetic pathways were amongst the most highly EBV induced. Epstein-Barr nuclear antigen 2 (EBNA2), sterol response element binding protein (SREBP) and MYC each had important roles in cholesterol and fatty acid pathway induction. Unexpectedly, HMG-CoA reductase inhibitor chemical epistasis experiments revealed that mevalonate pathway production of geranylgeranyl pyrophosphate (GGPP), rather than cholesterol, was necessary for EBV-driven B-cell outgrowth, perhaps because EBV upregulated the low-density lipoprotein receptor in newly infected cells for cholesterol uptake. Chemical and CRISPR genetic analyses highlighted downstream GGPP roles in EBV-infected cell small G protein Rab activation. Rab13 was highly EBV-induced in an EBNA3-dependent manner and served as a chaperone critical for latent membrane protein (LMP) 1 and 2A trafficking and target gene activation in newly infected and in lymphoblastoid B-cells. Collectively, these studies identify highlight multiple potential therapeutic targets for prevention of EBV-transformed B-cell growth and survival.


Subject(s)
B-Lymphocytes/virology , Fatty Acids/biosynthesis , Herpesvirus 4, Human/pathogenicity , Mevalonic Acid/metabolism , Alkyl and Aryl Transferases/metabolism , B-Lymphocytes/pathology , Cell Proliferation , Cell Survival , Cholesterol/biosynthesis , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/physiology , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Metabolic Networks and Pathways , Proto-Oncogene Proteins c-myc/metabolism , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Viral Proteins/metabolism , rab GTP-Binding Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 115(19): 4998-5003, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29691324

ABSTRACT

CD58 is an adhesion molecule that is known to play a critical role in costimulation of effector cells and is intrinsic to immune synapse structure. Herein, we describe a virally encoded gene that inhibits CD58 surface expression. Human cytomegalovirus (HCMV) UL148 was necessary and sufficient to promote intracellular retention of CD58 during HCMV infection. Blocking studies with antagonistic anti-CD58 mAb and an HCMV UL148 deletion mutant (HCMV∆UL148) with restored CD58 expression demonstrated that the CD2/CD58 axis was essential for the recognition of HCMV-infected targets by CD8+ HCMV-specific cytotoxic T lymphocytes (CTLs). Further, challenge of peripheral blood mononuclear cells ex vivo with HCMV∆UL148 increased both CTL and natural killer (NK) cell degranulation against HCMV-infected cells, including NK-driven antibody-dependent cellular cytotoxicity, showing that UL148 is a modulator of the function of multiple effector cell subsets. Our data stress the effect of HCMV immune evasion functions on shaping the immune response, highlighting the capacity for their potential use in modulating immunity during the development of anti-HCMV vaccines and HCMV-based vaccine vectors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Immune Evasion , Immunity, Cellular , Killer Cells, Natural/immunology , Viral Fusion Proteins/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Transformed , Cytomegalovirus/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/pathology , Humans , Killer Cells, Natural/pathology , Viral Fusion Proteins/genetics
8.
Infect Immun ; 85(10)2017 10.
Article in English | MEDLINE | ID: mdl-28760933

ABSTRACT

Plasmodium falciparum, the parasite that causes the deadliest form of malaria, has evolved multiple proteins known as invasion ligands that bind to specific erythrocyte receptors to facilitate invasion of human erythrocytes. The EBA-175/glycophorin A (GPA) and Rh5/basigin ligand-receptor interactions, referred to as invasion pathways, have been the subject of intense study. In this study, we focused on the less-characterized sialic acid-containing receptors glycophorin B (GPB) and glycophorin C (GPC). Through bioinformatic analysis, we identified extensive variation in glycophorin B (GYPB) transcript levels in individuals from Benin, suggesting selection from malaria pressure. To elucidate the importance of the GPB and GPC receptors relative to the well-described EBA-175/GPA invasion pathway, we used an ex vivo erythrocyte culture system to decrease expression of GPA, GPB, or GPC via lentiviral short hairpin RNA transduction of erythroid progenitor cells, with global surface proteomic profiling. We assessed the efficiency of parasite invasion into knockdown cells using a panel of wild-type P. falciparum laboratory strains and invasion ligand knockout lines, as well as P. falciparum Senegalese clinical isolates and a short-term-culture-adapted strain. For this, we optimized an invasion assay suitable for use with small numbers of erythrocytes. We found that all laboratory strains and the majority of field strains tested were dependent on GPB expression level for invasion. The collective data suggest that the GPA and GPB receptors are of greater importance than the GPC receptor, supporting a hierarchy of erythrocyte receptor usage in P. falciparum.


Subject(s)
Erythrocytes/physiology , Erythrocytes/parasitology , Glycophorins/genetics , Plasmodium falciparum/pathogenicity , Computational Biology , Glycophorins/metabolism , Humans , Ligands , Plasmodium falciparum/immunology , Plasmodium falciparum/physiology , Protein Binding , Proteomics , Receptors, Cell Surface/metabolism
9.
Materials (Basel) ; 17(19)2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39410251

ABSTRACT

Polymeric composites are prone to undergoing damage, such as microcracks, during their operation, which can ultimately lead to catastrophic failure. To contradict such a problem, efforts have been carried out, by the scientific community, towards developing self-healing composites that, by mimicking biological systems, can autonomously and prematurely repair flaws, extending the durability and improving the security of materials. The present review explores the progress made in this area, focusing on extrinsic self-healing methods, as these can be employed to a variety of materials. Reservoir-based techniques, which resort to capsules, hollow fibers or microvascular networks, and thermoplastic-based ones are overviewed, prioritizing innovative approaches made in recent years. At last, promising practical applications for self-healing composites are highlighted and future challenges and opportunities are pointed out.

10.
Cell Host Microbe ; 32(4): 466-478.e11, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38479395

ABSTRACT

Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.


Subject(s)
Cytomegalovirus , Proteomics , Humans , Cytomegalovirus/physiology , Virus Assembly , Virus Replication , Proteins , Autophagy , Lysosomes , Hydrogen-Ion Concentration
11.
EBioMedicine ; 108: 105316, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39293215

ABSTRACT

BACKGROUND: Acute myeloid leukaemia (AML) is a bone marrow malignancy with poor prognosis. One of several treatments for AML is midostaurin combined with intensive chemotherapy (MIC), currently approved for FLT3 mutation-positive (FLT3-MP) AML. However, many patients carrying FLT3 mutations are refractory or experience an early relapse following MIC treatment, and might benefit more from receiving a different treatment. Development of a stratification method that outperforms FLT3 mutational status in predicting MIC response would thus benefit a large number of patients. METHODS: We employed mass spectrometry phosphoproteomics to analyse 71 diagnosis samples of 47 patients with FLT3-MP AML who subsequently received MIC. We then used machine learning to identify biomarkers of response to MIC, and validated the resulting predictive model in two independent validation cohorts (n = 20). FINDINGS: We identified three distinct phosphoproteomic AML subtypes amongst long-term survivors. The subtypes showed similar duration of MIC response, but different modulation of AML-implicated pathways, and exhibited distinct, highly-predictive biomarkers of MIC response. Using these biomarkers, we built a phosphoproteomics-based predictive model of MIC response, which we called MPhos. When applied to two retrospective real-world patient test cohorts (n = 20), MPhos predicted MIC response with 83% sensitivity and 100% specificity (log-rank p < 7∗10-5, HR = 0.005 [95% CI: 0-0.31]). INTERPRETATION: In validation, MPhos outperformed the currently-used FLT3-based stratification method. Our findings have the potential to transform clinical decision-making, and highlight the important role that phosphoproteomics is destined to play in precision oncology. FUNDING: This work was funded by Innovate UK grants (application numbers: 22217 and 10054602) and by Kinomica Ltd.


Subject(s)
Leukemia, Myeloid, Acute , Mutation , Proteomics , Staurosporine , fms-Like Tyrosine Kinase 3 , Humans , Staurosporine/analogs & derivatives , Staurosporine/therapeutic use , Staurosporine/pharmacology , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Proteomics/methods , Female , Middle Aged , Male , Aged , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Phosphoproteins/metabolism , Phosphoproteins/genetics , Treatment Outcome , Prognosis , Biomarkers, Tumor
12.
Materials (Basel) ; 15(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36143742

ABSTRACT

Control of food spoilage is a critical concern in the current world scenario, not only to ensure the quality and safety of food but also to avoid the generation of food waste. This paper evaluates a dual-sensor strategy using six different pH indicators stamped on cardboard for the detection of spoilage in three different foods: beef, salmon, and strawberries. After function validation and formulation optimizations in the laboratory, the halochromic sensors methyl orange and bromocresol purple 2% (w/v) were stamped on cardboard and, in contact with the previously mentioned foods, were able to produce an easily perceptible signal for spoilage by changing color. Additionally, when it comes to mechanical characterization the inks showed high abrasion (>100 cycles) and adhesion resistance (>91%).

13.
Commun Biol ; 2: 350, 2019.
Article in English | MEDLINE | ID: mdl-31552303

ABSTRACT

Red blood cells (RBCs) play a critical role in oxygen transport, and are the focus of important diseases including malaria and the haemoglobinopathies. Proteins at the RBC surface can determine susceptibility to disease, however previous studies classifying the RBC proteome have not used specific strategies directed at enriching cell surface proteins. Furthermore, there has been no systematic analysis of variation in abundance of RBC surface proteins between genetically disparate human populations. These questions are important to inform not only basic RBC biology but additionally to identify novel candidate receptors for malarial parasites. Here, we use 'plasma membrane profiling' and tandem mass tag-based mass spectrometry to enrich and quantify primary RBC cell surface proteins from two sets of nine donors from the UK or Senegal. We define a RBC surface proteome and identify potential Plasmodium receptors based on either diminished protein abundance, or increased variation in RBCs from West African individuals.


Subject(s)
Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Membrane Proteins/metabolism , Proteomics , Humans , Proteome , Proteomics/methods , Systems Biology/methods
14.
Elife ; 82019 12 24.
Article in English | MEDLINE | ID: mdl-31873071

ABSTRACT

Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytomegalovirus Infections/genetics , Cytomegalovirus/genetics , Oncogene Proteins/genetics , Proteomics , Cytomegalovirus/pathogenicity , Cytomegalovirus Infections/virology , Gene Expression Regulation, Viral/genetics , Host-Pathogen Interactions/genetics , Humans , RNA Splicing/genetics , RNA, Messenger/genetics , Viral Proteins/genetics , Virus Replication/genetics
15.
Cell Metab ; 30(3): 539-555.e11, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31257153

ABSTRACT

Epstein-Barr virus (EBV) causes Burkitt, Hodgkin, and post-transplant B cell lymphomas. How EBV remodels metabolic pathways to support rapid B cell outgrowth remains largely unknown. To gain insights, primary human B cells were profiled by tandem-mass-tag-based proteomics at rest and at nine time points after infection; >8,000 host and 29 viral proteins were quantified, revealing mitochondrial remodeling and induction of one-carbon (1C) metabolism. EBV-encoded EBNA2 and its target MYC were required for upregulation of the central mitochondrial 1C enzyme MTHFD2, which played key roles in EBV-driven B cell growth and survival. MTHFD2 was critical for maintaining elevated NADPH levels in infected cells, and oxidation of mitochondrial NADPH diminished B cell proliferation. Tracing studies underscored contributions of 1C to nucleotide synthesis, NADPH production, and redox defense. EBV upregulated import and synthesis of serine to augment 1C flux. Our results highlight EBV-induced 1C as a potential therapeutic target and provide a new paradigm for viral onco-metabolism.


Subject(s)
Aminohydrolases/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cell Transformation, Viral , Epstein-Barr Virus Infections/metabolism , Folic Acid/metabolism , Herpesvirus 4, Human/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Multifunctional Enzymes/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/metabolism , Female , Glycolysis , HEK293 Cells , Humans , Lymphocyte Activation , Mitochondria/metabolism , NADP/biosynthesis , Oxidation-Reduction , Proteome/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Serine/biosynthesis
16.
Cell Host Microbe ; 24(3): 447-460.e11, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30122656

ABSTRACT

Human cytomegalovirus (HCMV) is an important pathogen with multiple immune evasion strategies, including virally facilitated degradation of host antiviral restriction factors. Here, we describe a multiplexed approach to discover proteins with innate immune function on the basis of active degradation by the proteasome or lysosome during early-phase HCMV infection. Using three orthogonal proteomic/transcriptomic screens to quantify protein degradation, with high confidence we identified 35 proteins enriched in antiviral restriction factors. A final screen employed a comprehensive panel of viral mutants to predict viral genes that target >250 human proteins. This approach revealed that helicase-like transcription factor (HLTF), a DNA helicase important in DNA repair, potently inhibits early viral gene expression but is rapidly degraded during infection. The functionally unknown HCMV protein UL145 facilitates HLTF degradation by recruiting the Cullin4 E3 ligase complex. Our approach and data will enable further identifications of innate pathways targeted by HCMV and other viruses.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Proteins/chemistry , Viral Proteins/chemistry , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Cytomegalovirus Infections/genetics , Cytomegalovirus Infections/virology , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/immunology , Humans , Immune Evasion , Protein Stability , Proteins/genetics , Proteins/immunology , Proteomics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology
17.
Cell Rep ; 19(7): 1479-1493, 2017 05 16.
Article in English | MEDLINE | ID: mdl-28514666

ABSTRACT

Epstein-Barr virus (EBV) replication contributes to multiple human diseases, including infectious mononucleosis, nasopharyngeal carcinoma, B cell lymphomas, and oral hairy leukoplakia. We performed systematic quantitative analyses of temporal changes in host and EBV proteins during lytic replication to gain insights into virus-host interactions, using conditional Burkitt lymphoma models of type I and II EBV infection. We quantified profiles of >8,000 cellular and 69 EBV proteins, including >500 plasma membrane proteins, providing temporal views of the lytic B cell proteome and EBV virome. Our approach revealed EBV-induced remodeling of cell cycle, innate and adaptive immune pathways, including upregulation of the complement cascade and proteasomal degradation of the B cell receptor complex, conserved between EBV types I and II. Cross-comparison with proteomic analyses of human cytomegalovirus infection and of a Kaposi-sarcoma-associated herpesvirus immunoevasin identified host factors targeted by multiple herpesviruses. Our results provide an important resource for studies of EBV replication.


Subject(s)
B-Lymphocytes/metabolism , B-Lymphocytes/virology , Herpesvirus 4, Human/physiology , Proteomics/methods , Virus Replication , Cell Cycle , Cell Membrane/metabolism , Complement System Proteins/metabolism , Down-Regulation , Humans , Proteolysis , Receptors, Antigen, B-Cell/metabolism , Time Factors , Transcription Factors/metabolism , Up-Regulation
18.
Elife ; 62017 02 10.
Article in English | MEDLINE | ID: mdl-28186488

ABSTRACT

The human cytomegalovirus (HCMV) US12 family consists of ten sequentially arranged genes (US12-21) with poorly characterized function. We now identify novel natural killer (NK) cell evasion functions for four members: US12, US14, US18 and US20. Using a systematic multiplexed proteomics approach to quantify ~1300 cell surface and ~7200 whole cell proteins, we demonstrate that the US12 family selectively targets plasma membrane proteins and plays key roles in regulating NK ligands, adhesion molecules and cytokine receptors. US18 and US20 work in concert to suppress cell surface expression of the critical NKp30 ligand B7-H6 thus inhibiting NK cell activation. The US12 family is therefore identified as a major new hub of immune regulation.


Subject(s)
Cytomegalovirus/immunology , Cytomegalovirus/pathogenicity , Host-Pathogen Interactions , Immunologic Factors/antagonists & inhibitors , Killer Cells, Natural/immunology , Membrane Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Humans , Immune Evasion , Proteomics
19.
PLoS One ; 10(8): e0136883, 2015.
Article in English | MEDLINE | ID: mdl-26317833

ABSTRACT

RIG-I-like receptors detect viral RNA in infected cells and promote oligomerization of the outer mitochondrial membrane protein MAVS to induce innate immunity to viral infection through type I interferon production. Mitochondrial reactive oxygen species (mROS) have been shown to enhance anti-viral MAVS signalling, but the mechanisms have remained obscure. Using a biochemical oligomerization-reporter fused to the transmembrane domain of MAVS, we found that mROS inducers promoted lipid-dependent MAVS transmembrane domain oligomerization in the plane of the outer mitochondrial membrane. These events were mirrored by Sendai virus infection, which similarly induced lipid peroxidation and promoted lipid-dependent MAVS transmembrane domain oligomerization. Our observations point to a role for mROS-induced changes in lipid bilayer properties in modulating antiviral innate signalling by favouring the oligomerization of MAVS transmembrane domain in the outer-mitochondrial membrane.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Immunity, Innate , Lipid Peroxidation , Adaptor Proteins, Signal Transducing/genetics , HEK293 Cells , Humans , Mitochondria/metabolism , Protein Interaction Domains and Motifs , Reactive Oxygen Species/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Respirovirus Infections/immunology , Sendai virus/immunology
20.
Brain Res Bull ; 111: 20-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25526898

ABSTRACT

Perineuronal nets (PNNs) are lattice like structures which encapsulate the cell body and proximal dendrites of many neurons and are thought to be involved in regulating synaptic plasticity. It is believed that exercise can enhance the plasticity of the Central Nervous System (CNS) in healthy and dysfunctional states by shifting the balance between plasticity promoting and plasticity inhibiting factors in favor of the former. Recent work has focused on exercise effects on trophic factors but its effect on other plasticity regulators is poorly understood. In the present study we investigated how exercise regulates PNN expression in the lumbar spinal cord and areas of the brain associated with motor control and learning and memory. Adult, female Sprague-Dawley rats with free access to a running wheel for 6 weeks had significantly increased PNN expression in the spinal cord compared to sedentary rats (PNN thickness around motoneurons, exercise=15.75±0.63µm, sedentary=7.98±1.29µm, p<0.01). Conversely, in areas of the brain associated with learning and memory there was a significant reduction in perineuronal net expression (number of neurons with PNN in hippocampus CA1-exercise 21±0.56 and sedentary 24±0.34, p<0.01, thickness-exercised=2.37±0.13µm, sedentary=4.27±0.21µm; p<0.01). Our results suggest that in response to exercise, PNNs are differentially regulated in select regions of the CNS, with a general decreased expression in the brain and increased expression in the lumbar spinal cord. This differential expression may indicate different regulatory mechanisms associated with plasticity in the brain compared to the spinal cord.


Subject(s)
Brain/metabolism , Extracellular Matrix/metabolism , Neuronal Plasticity , Neurons/metabolism , Physical Conditioning, Animal , Spinal Cord/metabolism , Adaptation, Physiological , Animals , Female , Hippocampus/metabolism , Immunohistochemistry , Lumbar Vertebrae , Muscle, Skeletal/metabolism , Plant Lectins/metabolism , Rats , Rats, Sprague-Dawley , Receptors, N-Acetylglucosamine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL