Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Langmuir ; 38(4): 1440-1447, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35043620

ABSTRACT

A significant number of studies have been conducted on particle adhesion phenomena as pertaining to the oil-water interface of droplets and the air-liquid interface of bubbles, known as Pickering emulsions and Pickering foams, respectively. However, few of the literature reports have discussed the optical properties of these materials. In this study, the optical properties of Pickering particles were calculated by using an electromagnetic field analysis via a finite element method, and their optical responses are discussed. The changes in scattering due to the differences in the number of adhering particles and particle size are compared for three composition systems: an oil-in-water Pickering emulsion, a water-in-oil Pickering emulsion, and a Pickering foam. It was determined that changes in the amount of scattering are due to the mixing of the phases in the scattering field. This effect is more pronounced when the size of the scatterer is significantly smaller than the wavelength. For systems with particles larger than the wavelength, changes in the amount of scattering were suppressed because of destructive interference of the electromagnetic waves. This work revealed that the variation in the amount of scattering due to the constituent material and size of the Pickering particles is affected by two different factors, and the change in the amount of scattering is 10 times greater than in a uniformly dispersed system.

2.
Int J Cosmet Sci ; 44(1): 20-29, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34767633

ABSTRACT

OBJECTIVE: Evaluating friction in human skin is important to assess its condition and the effects of skincare cosmetics. In this study, we evaluated the friction dynamics of moisturized skin to show the effects of moisturization on its mechanical properties. METHODS: Friction force was evaluated using a sinusoidal motion friction evaluation system. The skin of the upper arm of 20 subjects was rubbed using a contact probe. The water content of the stratum corneum and the softness of the skin were measured using a Corneometer and a Cutometer, respectively. RESULTS: When human skin was treated with water or 10 wt% glycerol aqueous solution, the friction coefficients increased by 0.23 ± 0.01 and 0.17 ± 0.14, respectively, and the delay times (normalized by calculating the time interval from contact with the probe to the friction response divided by the friction time for one round trip) increased by 0.048 ± 0.034 and 0.055 ± 0.024, respectively. Three different friction profiles were observed: (a) a stable pattern, in which a smooth profile was observed during the sliding process; (b) an oscillation pattern, in which significant oscillation was obtained; and (c) a stick pattern, in which the friction coefficient increased even during the deceleration process. In the case of untreated skin, the oscillation pattern was observed for the majority of subjects. The appearance rate of the stick pattern increased by 80.3% ± 29.4% after treatment with 10 wt% glycerol aqueous solution. These characteristic friction profiles can be explained by a two-step friction model consisting of two modes: (a) friction at the skin surface and (b) the delayed response due to skin deformation. CONCLUSION: Moisturizing the skin with water or 10 wt% glycerol aqueous solution increased the friction coefficient and delay time, dramatically changing the friction profile. These changes were considered to be due to the swelling and softening of the stratum corneum and the increased true contact area between the contact probe and the skin surface.


OBJECTIF: Une évaluation des effets de la friction sur la peau humaine demeure importante dans le but de juger de l'état de la peau ou de l'efficacité des produits cosmétiques pour les soins de la peau. Dans cette étude, nous avons évalué les propriétés d'une peau hydratée soumise à une friction afin d'identifier les effets de l'hydratation sur les propriétés mécaniques de la peau. MÉTHODE: Les forces de friction ont été évaluées grâce à un système d'évaluation du frottement par mouvement sinusoïdal. Une sonde de contact a été utilisée pour frotter la peau sur le haut du bras de 20 participants. La teneur en eau de la couche cornée et la souplesse de la peau ont été mesurées respectivement à l'aide d'un cornéomètre et d'un cutomètre. RÉSULTAT: Le traitement de la peau humaine avec de l'eau ou une solution de glycérol à 10% a entraîné une augmentation du coefficient de friction respectivement de 0.23 ± 0.01 et de 0.17 ± 0.14, ainsi que du délai de réaction (normalisé en divisant l'intervalle de temps entre le contact avec la sonde jusqu'à l'apparition de la réaction à la friction, par le temps de friction pour un aller-retour), de 0.048 ± 0.034 et de 0.055 ± 0.024. Trois profils de friction différents ont également été observés : (1) un modèle stable, (2) un modèle avec une grande oscillation, et (3) un modèle « collé-glissé ¼ où le coefficient de friction augmente même pendant la décélération. Lorsque la peau est sèche, le modèle oscillant a été observé chez la majorité des participants. Le taux d'apparition du modèle « collé-glissé ¼ a augmenté de 80.3 ± 29.4% dans le cas où la peau a été traitée avec une solution de glycérol à 10%. Ces profils caractéristiques de friction ont pu être expliqués à partir d'un modèle de friction composé de deux modes, (a) une friction à la surface de la peau et (b) un délai de réaction dû à la déformation de la peau. CONCLUSION: L'hydratation de la peau avec de l'eau ou une solution de glycérol à 10% a considérablement modifié le profil de friction en raison d'une augmentation du coefficient de friction et du délai de réaction. Nous avons estimé que ces changements sont relatifs au gonflement et à l'assouplissement de la couche cornée, engendrant une augmentation de la surface de contact réel entre la sonde de contact et la surface de la peau.


Subject(s)
Cosmetics , Skin , Body Water/physiology , Epidermis , Friction , Humans
3.
Langmuir ; 37(26): 8045-8052, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34157225

ABSTRACT

In this study, the friction properties of emulsions in an oral environment were investigated to understand the food-texture recognition mechanisms occurring on biological surfaces. Numerous publications have suggested that the friction phenomena depend on friction conditions, such as the surface characteristics, as well as the shape and movement of contact probes. Traditional friction evaluation systems are unsuitable for mimicking the oral environment. Thus, in this study, the friction forces between two fractal agar gel substrates in an emulsion were examined using a sinusoidal motion friction evaluation system that effectively mimics the oral environment. The physical properties of the fractal agar gel, including the elasticity, hydrophilicity, and surface roughness, were analogous to those of the human tongue. Furthermore, the sinusoidal motion imitated the movements of living organisms. Depending on the samples, three friction profiles were observed. For water, the surfactant aqueous solution, and olive oil, the friction profiles of the outward and homeward processes were symmetric (stable pattern). Interestingly, for an oil-in-water (O/W) emulsion, friction behaviors with not only an asymmetric friction profile (unstable pattern I) but also a lubrication phenomenon, which temporarily decreased the friction force (unstable pattern II), were noted. The probability for the appearance of unstable patterns and adhesion force between the gel substrates increased with the oil content of the O/W emulsions. These characteristic friction phenomena were attributed to the strong adhesive force in the emulsion, which was sandwiched between the agar gel substrates. The findings obtained in this study would contribute significantly to understanding the food-texture recognition mechanisms and dynamic phenomena occurring on biological surfaces.


Subject(s)
Hydrogels , Water , Emulsions , Friction , Humans , Lubrication
4.
Langmuir ; 35(43): 14124-14132, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31566379

ABSTRACT

Bio-inspired functional materials have received much attention for their potential to provide sustainable and advanced materials. The lotus effect has proven to be one of the most remarkable biomimetic effects since it was discovered by Barthlott. A superhydrophobic surface with the ability to bounce water droplets is the origin of the self-cleaning mechanism that keeps the surface clean by removing dust using water droplets moving with momentum. We have developed a crystal growth technique (CGT) of photochromic diarylethenes over the past decade, and from this, we fabricated a surface structure that closely resembles the natural lotus leaf's characteristic of controlling the Laplace pressure and clarified the importance of the double roughness structure of the surface. The bouncing ability is also discussed in terms of the characteristic size of the double roughness structure theoretically. Moreover, this work clarifies the exquisiteness of the double roughness structure of the leaf. We also show that the CGT is a versatile technique with the potential to fabricate desired structured surfaces.

5.
Langmuir ; 34(43): 12723-12729, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30272977

ABSTRACT

Understanding the friction phenomena on a gel surface under accelerated conditions is important for the designing of functional materials. However, there are few reports on friction under such conditions. In the present study, the effects of velocity, normal force, and gel hardness on the friction force were evaluated between two agar gels under sinusoidal motion. We found a friction phenomenon with an extremely low friction coefficient on the gel surfaces: the friction coefficient became less than 0.02 when sliding velocity increased. In addition, the profile of the friction coefficient was different between outward and homeward processes in the reciprocating sliding motion. In the outward direction, the low friction coefficient was maintained even if the sliding velocity decreased. On the other hand, the friction coefficient increased with sliding velocity in the homeward direction. This characteristic friction profile is caused by a long relaxation time on the gel surfaces. When the gel substrate is rubbed for a shorter time than the relaxation time, the morphology of the gel surface becomes unstable. Under such conditions, the formation and extinction of a thick liquid film can induce a super lubrication state and the asymmetric friction phenomena. These findings are useful not only for developing functional materials but also for understanding nonequilibrium phenomena in soft biological systems.

6.
J Am Chem Soc ; 138(32): 10299-303, 2016 08 17.
Article in English | MEDLINE | ID: mdl-27455376

ABSTRACT

Double roughness structure, the origin of the lotus effect of natural lotus leaf, was successfully reproduced on a diarylethene microcrystalline surface. Static superwater-repellency and dynamic water-drop-bouncing were observed on the surface, in the manner of natural lotus leaves. Double roughness structure was essential for water-drop-bouncing. This ability was not observed on a single roughness microcrystalline surface showing the lotus effect of the same diarylethene derivative. The double roughness structure was reversibly controlled by alternating irradiation with UV and visible light.


Subject(s)
Fractals , Lotus/anatomy & histology , Plant Leaves/anatomy & histology , Biomimetic Materials/chemistry , Crystallization , Light , Microscopy, Electron, Scanning , Molecular Structure , Nanostructures/chemistry , Pressure , Surface Properties , Ultraviolet Rays , Water/chemistry , Wettability
7.
Langmuir ; 32(25): 6328-34, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27249319

ABSTRACT

Understanding the dynamics with which a water droplet penetrates a pore is important because of its relationship with transfer phenomena in plants and animals. Using a high-speed camera, we observe the penetration processes of a water droplet into a cylindrical pore on a silicone substrate. The force on the water droplet is generated by dropping the substrate plus water droplet from a height of several centimeters onto an acrylic resin substrate. The penetration characteristics depend on pore size Dp, height of release of a drop h, and the viscosity of the droplet liquid and are classified into the following patterns: spreading, penetration, and breaking. During the process of relaxation to the steady state, various interesting deformation or oscillation phenomena occur. Based on high-speed images, we estimate the interfacial energy ΔG during the intermediate states and find an energy barrier ΔG = 1 × 10(-7) J when Dp = 1.0 mm and h = 15 mm for the spreading pattern and ΔG = 0.7 × 10(-7) J when Dp = 1.0 mm and h = 10 mm for the penetration pattern. Finally, based on a theoretical model considering the driving and suppression factors, we explain the experimentally obtained phase diagram including the separation, penetration, and breaking patterns.

8.
Langmuir ; 31(26): 7355-63, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26075949

ABSTRACT

Theoretical study is presented on the wetting behaviors of water droplets over a lotus leaf. Experimental results are interpreted to clarify the trade-offs among the potential energy change, the local pinning energy, and the adhesion energy. The theoretical parameters, calculated from the experimental results, are used to qualitatively explain the relations among surface fractal dimension, surface morphology, and dynamic wetting behaviors. The surface of a lotus leaf, which shows the superhydrophobic lotus effect, was dipped in ethanol to remove the plant waxes. As a result, the lotus effect is lost. The contact angle of a water drop decreased dramatically from 161° of the original surface to 122°. The water droplet was pinned on the surface. From the fractal analysis, the fractal region of the original surface was divided into two regions: a smaller-sized roughness region of 0.3-1.7 µm with D of 1.48 and a region of 1.7-19 µm with D of 1.36. By dipping the leaf in ethanol, the former fractal region, characterized by wax tubes, was lost, and only the latter large fractal region remained. The lotus effect is attributed to a surface structure that is covered with needle-shaped wax tubes, and the remaining surface allows invasion of the water droplet and enlarges the interaction with water.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Lotus/chemistry , Models, Molecular , Nanostructures/chemistry , Plant Leaves/chemistry , Adhesiveness , Ethanol/chemistry , Water/chemistry , Waxes/chemistry
9.
Langmuir ; 30(35): 10643-50, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25111681

ABSTRACT

Two types of superhydrophobic surfaces which show lotus and petal effects were induced on photochromic diarylethene microcrystalline surfaces by UV and visible light irradiation and temperature control. On the surfaces showing the lotus effect, a low-adhesion superhydrophobic property is attributed to the surface structure being covered with densely standing needle-shaped crystals of the closed-ring isomer. On surfaces showing the petal effect, a high-adhesion superhydrophobic surface consists of fine needle-shaped crystals with high density together with a few rod-shaped crystals, where an invasion phenomenon occurs between these rod-shaped crystals. Furthermore, the different superhydrophobic properties of the surfaces are theoretically explained using multipillar surface models.


Subject(s)
Light , Hydrophobic and Hydrophilic Interactions , Surface Properties , Wettability
10.
J Oleo Sci ; 73(2): 177-186, 2024.
Article in English | MEDLINE | ID: mdl-38311408

ABSTRACT

Moisturization causes physiological changes that improve the barrier function of human skin and mechanical changes, including skin friction characteristics. This study evaluated petrolatum- or silicone oil-treated human skin to determine the effect of moisturizing on the friction dynamics. The friction force on the human skin was measured using a contact probe with a sinusoidal motion. The contact probe was used to rub the skin of the upper arm of 20 subjects. The water content of the stratum corneum, softness, and barrier function of the skin were measured using a corneometer, cutometer, and tewameter, respectively. Both oils reduce the frictional force on the human skin. Simultaneously, silicone oil also reduced the delay time δ, which is the standardized time difference between the frictional force response to contact probe movement. Three typical friction patterns were also discovered, which were significantly changed by the treatment with oil. These changes were attributed to the lubrication effect and elimination of adhesion at the true contact point between the skin and the contact probe.


Subject(s)
Silicone Oils , Skin , Humans , Friction , Oils , Epidermis
11.
J Oleo Sci ; 73(7): 1015-1026, 2024.
Article in English | MEDLINE | ID: mdl-38945920

ABSTRACT

Herein, we evaluated friction dynamics of human skin treated with polyacrylic acid aqueous solutions or gel creams using a sinusoidal motion friction evaluation system to demonstrate the effect of treatment with polymer aqueous solutions on human skin. A polymer aqueous solution or gel cream was applied to the inner forearms of 10 subjects to evaluate temporal changes in friction force under sinusoidal motion. Water content, skin viscoelasticity, and transepidermal water loss were also simultaneously measured to determine the effects on skin conditions. When human skin was treated with the polymer aqueous solution, the friction coefficient immediately after treatment was 0.69-0.99 and the delay time δ, a normalized parameter of the time difference in the delayed response of friction to the movement of the contact probe divided by the friction time T 0 for one round trip, was 0.171-0.179, which was greater than that of untreated skin. This increase was caused by the swelling and softening of the stratum corneum caused by the penetration of water in the polymer aqueous solution, which increased true contact area between the skin and contact probe. A significant difference was observed in the friction coefficient of the skin immediately after treatment with different polymer aqueous solutions. Among polymers (P1-P4), P4, which has a low-salt resistance and low yield stress, had the lowest friction coefficient because of collapsing of the polymer network structures by shearing and reduced viscosity owing to salts on human skin. The skin treated with a gel cream also exhibited a greater friction coefficient than the untreated skin immediately after treatment and 90 min later. This phenomenon can be caused by the occlusive effect of the oil in the gel cream.


Subject(s)
Acrylic Resins , Friction , Solutions , Water , Humans , Viscosity , Acrylic Resins/chemistry , Skin/drug effects , Elasticity , Adult , Female , Male , Polymers/chemistry , Skin Cream/chemistry , Gels , Water Loss, Insensible/drug effects
12.
J Oleo Sci ; 73(5): 801-811, 2024.
Article in English | MEDLINE | ID: mdl-38692901

ABSTRACT

Hair shape affects the frictional properties and tactile sensation of hair. In this study, we evaluated the friction associated with the rubbing of straight, curly, or wavy hair by a contact probe equipped in a sinusoidal motion friction evaluation system. This system provides dynamic information such as the velocity dependence and hysteresis of the frictional force. In the case of hair fibers fixed at 1 mm intervals on a glass plate, a stable friction pattern was observed, in which the friction coefficient was almost constant during the dynamic friction process. The friction coefficients in the inward direction toward the hair root for straight, curly, and wavy hair were 0.47 ± 0.04, 0.51 ± 0.02, and 0.54 ± 0.04, respectively. As wavy hair is thick and has a larger true contact area with the contact probe, the friction coefficient was larger. When the finger model rubbed the straight or curly hair bundle in the inward direction, an oscillation pattern was observed, with the friction coefficient fluctuating at 20 ms intervals and the kinetic friction coefficient evaluated at 0.67 and 0.64, respectively. For the surface of straight hair, containing densely arranged cuticles, a large oscillation was observed in the direction against the cuticles. Meanwhile, no oscillation phenomenon was observed in wavy hair, which is characterized by a smooth cuticle and complex hair flow. Because wavy hair, which is frizzy, has fewer points of contact between hairs, impeding the occurrence of cooperative fluctuations in the frictional force.


Subject(s)
Friction , Hair , Hair/physiology , Humans , Touch/physiology
13.
J Oleo Sci ; 72(2): 171-177, 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36631106

ABSTRACT

The friction characteristics of foaming body cleansers determine skin physical irritation, as well as the usability of the products. In this study, the friction of foam formed by a commercial body cleanser was evaluated using a sinusoidal-motion friction evaluation system. The friction profile of the foam was a hydrodynamic stable pattern, where the friction force increased with increasing velocity. In addition, soapbased cleansers, containing polyols, showed large friction coefficients. These properties suggest that the mechanical properties of the interfacial film and viscosity of the cleanser bulk affect friction properties. These findings assist in controlling the texture of body cleansers.


Subject(s)
Cosmetics , Friction , Soaps
14.
J Oleo Sci ; 72(4): 421-428, 2023.
Article in English | MEDLINE | ID: mdl-36990750

ABSTRACT

Organogels are attractive formulations in cosmetics, food, and pharmaceuticals. They exhibit characteristic frictional and mechanical responses during the collapse of a mesostructure. In this study, the friction dynamics of organogels composed of five different waxes (paraffin wax, microcrystalline wax, ceresin, candelilla wax, and carnauba wax) and liquid paraffin were evaluated using a sinusoidal motion friction evaluation system. All organogels exhibited a velocity dependence of friction coefficient that increased with the acceleration of the contact probe. Depending on the ease of the crystal formation of the waxes in liquid paraffin, hydrocarbon-based waxes formed soft organogels with a low-friction coefficient, whereas ester-based, highly polar waxes formed organogels that were hard and had a high-friction coefficient.


Subject(s)
Plant Oils , Skin, Artificial , Plant Oils/chemistry , Friction , Mineral Oil , Waxes/chemistry
15.
J Oleo Sci ; 72(8): 767-773, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37468272

ABSTRACT

Raw materials suitable for a sustainable society have attracted interest in the cosmetics industry. We focused on rice bran as a sustainable material and evaluated the gelation behavior of paraffin extracted from rice bran (rice paraffin) against liquid paraffin, squalane, jojoba oil, and silicone oil. In addition, the frictional properties of the prepared organogel on an artificial skin surface were evaluated using a sinusoidal motion friction evaluation system. Rice paraffin solidified all oils even at the lowest wax concentration of 5 wt%. The hardness and kinetic friction coefficient µ k increased with an increase in the wax composition. The hardness and µ k of organogels solidified with rice paraffin were smaller than those of gels solidified with petroleum-derived paraffin. These differences are caused by the smaller carbon amount of rice paraffin. The friction parameters depended on the type of oil: the µ k of RLG composed of rice and liquid paraffin was greater than that of the other three oils (R, L, and G denote rice paraffin, liquid paraffin, and gel, respectively). These findings promote the development of lipsticks and cleansing gels consisting of sustainable development goal-responsive raw materials.


Subject(s)
Oryza , Paraffin , Mineral Oil , Friction , Oils , Gels , Rice Bran Oil
16.
Langmuir ; 28(8): 3799-806, 2012 Feb 28.
Article in English | MEDLINE | ID: mdl-22280299

ABSTRACT

We have experimentally observed anomalous spreading of aqueous alcohol solutions on flat and rough fractal agar gel surfaces. On flat agar gel surfaces, extremely fast spreading [θ(D)(t) ∝ t(-0.92)] that differs from Tanner's law [θ(D)(t) ∝ t(-0.3)] was observed when the liquid contained over 9 wt % of 1-propanol in which strong Marangoni flow was observed as a fluctuation on the liquid surface. However, on fractal gel surfaces, different spreading dynamics [θ(D)(t) ∝ t(-0.58)] were observed, although Marangoni flow still occurred. We found the surface-dependent spreading can be discussed in terms of competition between Marangoni flow and the pinning effect due to surface roughness.


Subject(s)
Agar/chemistry , Gels/chemistry , Surface Properties
17.
ACS Omega ; 7(19): 16515-16523, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35601302

ABSTRACT

Foams are viscoelastic soft materials with complex mechanical properties. Here, we evaluated the friction dynamics of foams between acrylic plates using a sinusoidal motion friction evaluation system and we found some interesting characteristics under accelerated conditions. On a typical solid surface, a symmetrical friction profile, in which static and kinetic frictions are observed, is obtained under reciprocating nonlinear motion. Meanwhile, significant lubricant effects and velocity-dependent friction profiles without static friction were observed in foams. The friction force in foams increased in proportion to the power of velocity, with a power index of <1. These characteristic and dynamic phenomena in foams were observed in this study. They had been caused by the formation of a thick lubricant film and various dissipative modes including surfactant diffusion, viscous dissipation, and wall slip of bubbles. Moreover, the addition of a thickener increased the friction force and the delay time of friction response and improved the foam durability against normal force and shear. These findings are useful for understanding dynamic phenomena in soft materials.

18.
J Oleo Sci ; 71(8): 1159-1168, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35793976

ABSTRACT

Frictional properties are one of the most important physical factors in the design of cosmetic dispersions in which solid particles are dispersed in a liquid. The effects of ingredients and formulations on frictional properties have been previously reported. In this study, the frictional properties of 33 cosmetic dispersions were evaluated using a sinusoidal motion friction evaluation system when applied on an artificial skin. A detailed analysis of the velocity dependence of the friction coefficient demonstrated that all cosmetic dispersions exhibited stable pattern and the friction behavior did not change during the round trip. We analyzed friction-based parameters by principal component analysis and demonstrated that the principal components Z 1 and Z 2 include the static friction coefficient µ s, kinetic friction coefficient µ k, delay time δ, and viscosity coefficient C, and that these factors are involved in characterizing friction dynamics. The cluster analysis on Z 1 and Z 2 suggested that these dispersions can be classified in three groups with respect to friction dynamics. These results can help understand the characteristics of cosmetics and control their function and utility.


Subject(s)
Cosmetics , Skin, Artificial , Friction , Kinetics , Viscosity
19.
J Oleo Sci ; 71(10): 1459-1467, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36089401

ABSTRACT

Frictional properties are one of the most important physical factors in the design of powder cosmetics. In this study, 21 powder cosmetics were applied to artificial skin, and their friction characteristics were evaluated using a sinusoidal motion friction evaluation system. Three friction profiles were observed that depended on the sliding velocity. Principal component analysis showed that the principal component (Z), which characterized the friction dynamics of powder cosmetics, included the static friction coefficient (µ s), the kinetic friction coefficient (µ k), the delay time (δ), and the viscosity coefficient (C). Furthermore, a cluster analysis on Z suggested that powder cosmetics can be classified into three groups according to their friction dynamics. These results may be helpful to understand the phenomena that occur during the application of powder cosmetics.


Subject(s)
Cosmetics , Skin, Artificial , Friction , Powders , Viscosity
20.
J Oleo Sci ; 71(11): 1639-1645, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36198581

ABSTRACT

Considering that iodine is highly volatile and has low solubility in water, it is utilized as an antiseptic in its complex form (iodophor) with a carrier material. Herein, we prepared the polysorbate 80-iodine complex and investigated its properties. In the presence of 0%, 0.01%, 0.1%, and 1% polysorbate, Pseudomonas putida NBRC 100650 growth was inhibited at 75, 75, 50, and 25 ppm iodine, respectively, indicating that high concentrations of polysorbate 80 enhanced the antibacterial activity of iodine. Absorption spectra of the mixtures of polysorbate 80 and iodine were analyzed; we observed that two peaks at 287 and 350 nm, derived from triiodide ions, shifted to the longer wavelength side in the presence of 0.1% and 1% polysorbate 80. Further, when 1% polysorbate 80 was added to the mixture of soluble starch and iodine, the peak around 580 nm arising from the amylose-iodine complex disappeared, indicating that polysorbate 80 captured iodine from the starch-iodine complex. We also found that polysorbate 80 retained iodine for approximately 4 months and prevented its volatilization; moreover, the mixture did not lose its growth inhibitory activity upon storage for approximately 4 months. Collectively, our data indicated that polysorbate 80 firmly retains low concentrations of iodine and that the polysorbate 80-iodine complex can serve as an antiseptic that can be stably stored for a long time.


Subject(s)
Anti-Infective Agents, Local , Iodine , Polysorbates , Solubility , Anti-Infective Agents, Local/pharmacology , Starch , Iodides
SELECTION OF CITATIONS
SEARCH DETAIL