ABSTRACT
The VH1-2 restricted VRC01-class of antibodies targeting the HIV envelope CD4 binding site are a major focus of HIV vaccine strategies. However, a detailed analysis of VRC01-class antibody development has been limited by the rare nature of these responses during natural infection and the lack of longitudinal sampling of such responses. To inform vaccine strategies, we mapped the development of a VRC01-class antibody lineage (PCIN63) in the subtype C infected IAVI Protocol C neutralizer PC063. PCIN63 monoclonal antibodies had the hallmark VRC01-class features and demonstrated neutralization breadth similar to the prototype VRC01 antibody, but were 2- to 3-fold less mutated. Maturation occurred rapidly within Ć¢ĀĀ¼24Ā months of emergence of the lineage and somatic hypermutations accumulated at key contact residues. This longitudinal study of broadly neutralizing VRC01-class antibody lineage reveals early binding to the N276-glycan during affinity maturation, which may have implications for vaccine design.
Subject(s)
AIDS Vaccines/immunology , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/metabolism , Broadly Neutralizing Antibodies/metabolism , HIV Antibodies/metabolism , HIV Infections/immunology , HIV-1/physiology , AIDS Vaccines/genetics , Amino Acid Sequence , Antibodies, Monoclonal/genetics , Antibodies, Neutralizing/genetics , Antibody Affinity , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/genetics , CD4 Antigens/metabolism , Complementarity Determining Regions/genetics , HIV Antibodies/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , Humans , Polysaccharides/metabolism , Protein BindingABSTRACT
BACKGROUND: HIV-1 infects a wide range of CD4+ T cells with different phenotypic properties and differing expression levels of entry coreceptors. We sought to determine the viral tropism of subtype C (C-HIV) Envelope (Env) clones for different CD4+ T cell subsets and whether tropism changes during acute to chronic disease progression. HIV-1 envs were amplified from the plasma of five C-HIV infected women from three untreated time points; less than 2Ā months, 1-year and 3-years post-infection. Pseudoviruses were generated from Env clones, phenotyped for coreceptor usage and CD4+ T cell subset tropism was measured by flow cytometry. RESULTS: A total of 50 C-HIV envs were cloned and screened for functionality in pseudovirus infection assays. Phylogenetic and variable region characteristic analysis demonstrated evolution in envs between time points. We found 45 pseudoviruses were functional and all used CCR5 to mediate entry into NP2/CD4/CCR5 cells. In vitro infection assays showed transitional memory (TM) and effector memory (EM) CD4+ T cells were more frequently infected (median: 46% and 25% of total infected CD4+ T cells respectively) than naĆÆve, stem cell memory, central memory and terminally differentiated cells. This was not due to these subsets contributing a higher proportion of the CD4+ T cell pool, rather these subsets were more susceptible to infection (median: 5.38% EM and 2.15% TM cells infected), consistent with heightened CCR5 expression on EM and TM cells. No inter- or intra-participant changes in CD4+ T cell subset tropism were observed across the three-time points. CONCLUSIONS: CD4+ T cell subsets that express more CCR5 were more susceptible to infection with C-HIV Envs, suggesting that these may be the major cellular targets during the first 3Ā years of infection. Moreover, we found that viral tropism for different CD4+ T cell subsets in vitro did not change between Envs cloned from acute to chronic disease stages. Finally, central memory, naĆÆve and stem cell memory CD4+ T cell subsets were susceptible to infection, albeit inefficiently by Envs from all time-points, suggesting that direct infection of these cells may help establish the latent reservoir early in infection.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , HIV Infections/virology , HIV-1/physiology , T-Lymphocyte Subsets/immunology , Viral Tropism , env Gene Products, Human Immunodeficiency Virus/metabolism , Adult , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Female , Genetic Variation , HIV Infections/immunology , HIV-1/classification , HIV-1/genetics , Humans , Immunologic Memory , Longitudinal Studies , Phylogeny , Receptors, HIV/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , env Gene Products, Human Immunodeficiency Virus/geneticsABSTRACT
Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01-12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30-38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.
Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp160/chemistry , HIV Envelope Protein gp160/immunology , AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Amino Acid Sequence , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/isolation & purification , Antibody Affinity/genetics , Antibody Affinity/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Binding Sites/immunology , CD4 Antigens/immunology , CD4 Antigens/metabolism , Cell Lineage , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Evolution, Molecular , HIV Antibodies/chemistry , HIV Antibodies/genetics , HIV Antibodies/isolation & purification , HIV Infections/immunology , HIV-1/chemistry , HIV-1/immunology , Humans , Models, Molecular , Molecular Sequence Data , Neutralization Tests , Protein Structure, Tertiary , Somatic Hypermutation, Immunoglobulin/geneticsABSTRACT
Broadly cross-neutralizing (BCN) antibodies are likely to be critical for an effective HIV vaccine. However, the ontogeny of such antibodies and their relationship with autologous viral evolution is unclear. Here, we characterized viral evolution in CAP256, a subtype C-infected individual who developed potent BCN antibodies targeting positions R166 and K169 in the V2 region. CAP256 was superinfected at 3 months postinfection with a virus that was highly sensitive to BCN V2-dependent monoclonal antibodies. The autologous neutralizing response in CAP256 was directed at V1V2, reaching extremely high titers (>1:40,000) against the superinfecting virus at 42 weeks, just 11 weeks prior to the development of the BCN response targeting the same region. Recombination between the primary and superinfecting viruses, especially in V2 and gp41, resulted in two distinct lineages by 4 years postinfection. Although neutralization of some CAP256 clones by plasma from as much as 2 years earlier suggested incomplete viral escape, nonetheless titers against later clones were reduced at least 40-fold to less than 1:1,000. Escape mutations were identified in each lineage, either at R166 or at K169, suggesting that strain-specific and BCN antibodies targeted overlapping epitopes. Furthermore, the early dependence of CAP256 neutralizing antibodies on the N160 glycan decreased with the onset of neutralization breadth, indicating a change in specificity. These data suggest rapid maturation, within 11 weeks, of CAP256 strain-specific antibodies to acquire breadth, with implications for the vaccine elicitation of BCN V2-dependent antibodies. Overall these studies demonstrate that ongoing viral escape is possible, even from BCN antibodies.
Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Amino Acid Sequence , Cross Reactions , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , HIV-1/isolation & purification , Humans , Molecular Sequence Data , Phylogeny , Sequence AlignmentABSTRACT
BACKGROUND: Identification of the epitopes targeted by antibodies that can neutralize diverse HIV-1 strains can provide important clues for the design of a preventative vaccine. METHODS: We have developed a computational approach that can identify key amino acids within the HIV-1 envelope glycoprotein that influence sensitivity to broadly cross-neutralizing antibodies. Given a sequence alignment and neutralization titers for a panel of viruses, the method works by fitting a phylogenetic model that allows the amino acid frequencies at each site to depend on neutralization sensitivities. Sites at which viral evolution influences neutralization sensitivity were identified using Bayes factors (BFs) to compare the fit of this model to that of a null model in which sequences evolved independently of antibody sensitivity. Conformational epitopes were identified with a Metropolis algorithm that searched for a cluster of sites with large Bayes factors on the tertiary structure of the viral envelope. RESULTS: We applied our method to ID50 neutralization data generated from seven HIV-1 subtype C serum samples with neutralization breadth that had been tested against a multi-clade panel of 225 pseudoviruses for which envelope sequences were also available. For each sample, between two and four sites were identified that were strongly associated with neutralization sensitivity (2ln(BF) > 6), a subset of which were experimentally confirmed using site-directed mutagenesis. CONCLUSIONS: Our results provide strong support for the use of evolutionary models applied to cross-sectional viral neutralization data to identify the epitopes of serum antibodies that confer neutralization breadth.
Subject(s)
Antibodies, Neutralizing/immunology , Cross Reactions , Epitopes/immunology , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Computational Biology/methods , Epitopes/genetics , HIV-1/genetics , env Gene Products, Human Immunodeficiency Virus/geneticsABSTRACT
The targets of broadly cross-neutralizing (BCN) antibodies are of great interest in the HIV vaccine field. We have identified a subtype C HIV-1-superinfected individual, CAP256, with high-level BCN activity, and characterized the antibody specificity mediating breadth. CAP256 developed potent BCN activity peaking at 3 years postinfection, neutralizing 32 (76%) of 42 heterologous viruses, with titers of antibodies against some viruses exceeding 1:10,000. CAP256 showed a subtype bias, preferentially neutralizing subtype C and A viruses over subtype B viruses. CAP256 BCN serum targeted a quaternary epitope which included the V1V2 region. Further mapping identified residues F159, N160, L165, R166, D167, K169, and K171 (forming the FN/LRD-K-K motif) in the V2 region as crucial to the CAP256 epitope. However, the fine specificity of the BCN response varied over time and, while consistently dependent on R166 and K169, became gradually less dependent on D167 and K171, possibly contributing to the incremental increase in breadth over 4 years. The presence of an intact FN/LRD-K-K motif in heterologous viruses was associated with sensitivity, although the length of the adjacent V1 loop modulated the degree of sensitivity, with a shorter V1 region significantly associated with higher titers. Repair of the FN/LRD-K-K motif in resistant heterologous viruses conferred sensitivity, with titers sometimes exceeding 1:10,000. Comparison of the CAP256 epitope with that of the PG9/PG16 monoclonal antibodies suggested that these epitopes overlapped, adding to the mounting evidence that this may represent a common neutralization target that should be further investigated as a potential vaccine candidate.
Subject(s)
Antibodies, Neutralizing/blood , Epitopes/immunology , HIV Antibodies/blood , HIV Envelope Protein gp120/immunology , HIV Infections/immunology , HIV-1/immunology , Antibodies, Neutralizing/immunology , Cross Reactions , Epitope Mapping , Genotype , HIV Antibodies/immunology , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Humans , Neutralization Tests , Plasma/immunologyABSTRACT
We report here on HIV-1 immunization results in rabbits and macaques co-immunized with clade C gp160 DNA and gp140 trimeric envelope vaccines, a strategy similar to a recent clinical trial that showed improved speed and magnitude of humoral responses. Clade C envelopes were isolated from CAP257, an individual who developed a unique temporal pattern of neutralization breadth development, comprising three separate "Waves" targeting distinct Env epitopes and different HIV clades. We used phylogeny and neutralization criteria to down-select envelope vaccine candidates, and confirmed antigenicity of our antigens by interaction with well-characterized broadly neutralizing monoclonal antibodies. Using these envelopes, we performed rabbit studies that screened for immunogenicity of CAP257 Envs from timepoints preceding peak neutralization breadth in each Wave. Selected CAP257 envelopes from Waves 1 and 2, during the first 2 years of infection that were highly immunogenic in rabbits were then tested in macaques. We found that in rabbits and macaques, co-immunization of DNA, and protein envelope-based vaccines induced maximum binding and neutralizing antibody titers with three immunizations. No further benefit was obtained with additional immunizations. The vaccine strategies recapitulated the Wave-specific epitope targeting observed in the CAP257 participant, and elicited Tier 1A, 1B, and Tier 2 heterologous neutralization. CAP257 envelope immunogens also induced the development of ADCC and TFH responses in macaques, and these responses positively correlated with heterologous neutralization. Together, the results from two animal models in this study have implications for identifying effective vaccine immunogens. We used a multi-step strategy to (1) select an Env donor with well-characterized neutralization breadth development; (2) study Env phylogeny for potential immunogens circulating near peak breadth timepoints during the first 2 years of infection; (3) test down-selected Envs for antigenicity; (4) screen down-selected Envs in an effective vaccine regimen in rabbits; and (5) advance the most immunogenic Envs to NHP studies. The results were an induction of high titers of HIV-1 envelope-specific antibodies with increasing avidity and cross-clade neutralizing antibodies with effector functions that together may improve the potential for protection in a pre-clinical SHIV model.
Subject(s)
AIDS Vaccines/administration & dosage , Broadly Neutralizing Antibodies/blood , HIV Antibodies/blood , HIV Envelope Protein gp160/administration & dosage , HIV Infections/prevention & control , HIV-1/immunology , Immunization , Immunogenicity, Vaccine , env Gene Products, Human Immunodeficiency Virus/administration & dosage , AIDS Vaccines/immunology , Animals , Broadly Neutralizing Antibodies/immunology , Epitopes , Female , HIV Antibodies/immunology , HIV Envelope Protein gp160/genetics , HIV Envelope Protein gp160/immunology , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Immunity, Humoral , Macaca mulatta , Male , Rabbits , Time Factors , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunologyABSTRACT
Neutralizing antibodies (nAbs) to highly variable viral pathogens show remarkable diversification during infection, resulting in an "arms race" between virus and host. Studies of nAb lineages have shown how somatic hypermutation (SHM) in immunoglobulin (Ig)-variable regions enables maturing antibodies to neutralize emerging viral escape variants. However, the Ig-constant region (which determines isotype) can also influence epitope recognition. Here, we use longitudinal deep sequencing of an HIV-directed nAb lineage, CAP88-CH06, and identify several co-circulating isotypes (IgG3, IgG1, IgA1, IgG2, and IgA2), some of which share identical variable regions. First, we show that IgG3 and IgA1 isotypes are better able to neutralize longitudinal autologous viruses and epitope mutants than can IgG1. Second, detrimental class-switch recombination (CSR) events that resulted in reduced neutralization can be rescued by further CSR, which we term "switch redemption." Thus, CSR represents an additional immunological mechanism to counter viral escape from HIV-specific antibody responses.
Subject(s)
HIV-1/immunology , Immunoglobulin Class Switching/immunology , Neutralization Tests/methods , HumansABSTRACT
Eliciting antibodies that neutralize a broad range of circulating HIV strains (broadly neutralizing antibodies [bnAbs]) represents a key priority for vaccine development. HIV superinfection (re-infection with a second strain following an established infection) has been associated with neutralization breadth, and can provide insights into how the immune system responds to sequential exposure to distinct HIV envelope glycoproteins (Env). Characterizing the neutralizing antibody (nAb) responses in four superinfected women revealed that superinfection does not boost memory nAb responses primed by the first infection or promote nAb responses to epitopes conserved in both infecting viruses. While one superinfected individual developed potent bnAbs, superinfection was likely not the driver asĀ the nAb response did not target an epitope conserved in both viruses. Rather, sequential exposure led to nAbs specific to each Env but did not promote bnAb development. Thus, sequential immunization with heterologous Envs may not be sufficient to focus the immune response onto conserved epitopes.
Subject(s)
HIV Antibodies/immunology , HIV Infections/virology , HIV-1/immunology , RNA, Viral/immunology , Superinfection/virology , Adult , Anti-HIV Agents/therapeutic use , Antibodies, Neutralizing/immunology , Female , HEK293 Cells , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Infections/blood , HIV Infections/complications , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/genetics , Humans , Middle Aged , Peptide Fragments/genetics , Peptide Fragments/immunology , RNA, Viral/blood , RNA, Viral/genetics , Superinfection/blood , Superinfection/complications , Superinfection/drug therapy , Tenofovir/therapeutic useABSTRACT
Antibodies that bind residue K169 in the V2 region of the HIV-1 envelope correlated with reduced risk of infection in the RV144 vaccine trial but were restricted to two ED-motif-encoding light chain genes. Here, we identify an HIV-infected donor with high-titer V2 peptide-binding antibodies and isolate two antibody lineages (CAP228-16H/19F and CAP228-3D) that mediate potent antibody-dependent cell-mediated cytotoxicity (ADCC). Both lineages use the IGHV5-51 heavy chain germline gene, similar to the RV144 antibody CH58, but one lineage (CAP228-16H/19F) uses a light chain without the ED motif. A cocrystal structure of CAP228-16H bound to a V2 peptide identified a IGLV3-21 gene-encoded DDxD motif that is used to bind K169, with a mechanism that allows CAP228-16H to recognize more globally relevant V2 immunotypes. Overall, these data further our understanding of the development of cross-reactive, V2-binding, antiviral antibodies and effectively expand the human light chain repertoire able to respond to RV144-like immunogens.
Subject(s)
AIDS Vaccines/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Infections/immunology , HIV Infections/virology , Immunoglobulin Light Chains/metabolism , Lysine/metabolism , Alleles , Amino Acid Sequence , HIV Antibodies/isolation & purification , HIV Envelope Protein gp120/metabolism , Humans , Immunoglobulin Light Chains/chemistry , Models, Molecular , Peptides/metabolism , Protein Binding , Tissue DonorsABSTRACT
We examined the ability of HIV-1 subtype C to develop resistance to the inhibitory lectins, griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN), which bind multiple mannose-rich glycans on gp120. Four primary HIV-1 strains cultured under escalating concentrations of these lectins became increasingly resistant tolerating 2 to 12 times their 50% inhibitory concentrations. Sequence analysis of gp120 showed that most had deletions of 1 to 5 mannose-rich glycans. Glycosylation sites at positions 230, 234, 241, 289 located in the C2 region and 339, 392 and 448 in the C3-C4 region were affected. Furthermore, deletions and insertions of up to 5 amino acids in the V4 region were observed in 3 of the 4 isolates. These data suggest that loss of glycosylation sites on gp120 as well as rearrangement of glycans in V4 are mechanisms involved in HIV-1 subtype C escape from GRFT, CV-N and SVN.
Subject(s)
Antiviral Agents/pharmacology , Bacterial Proteins/pharmacology , Carrier Proteins/pharmacology , Drug Resistance, Viral , HIV-1/drug effects , Lectins/pharmacology , Plant Lectins/pharmacology , Cell Line , Drug Tolerance , Glycosylation , HIV Envelope Protein gp120/genetics , HIV-1/genetics , HIV-1/growth & development , Humans , Inhibitory Concentration 50 , Membrane Proteins , Microbial Sensitivity Tests , Mutant Proteins/genetics , Mutation, Missense , Sequence Analysis, DNA , Serial PassageABSTRACT
Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful, a minority of individuals naturally develop these antibodies after many years of infection. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1-infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly under-represented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.