Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Med Virol ; 95(10): e29134, 2023 10.
Article in English | MEDLINE | ID: mdl-37805977

ABSTRACT

In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 104 nonendemic locations worldwide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.


Subject(s)
Mpox (monkeypox) , Orthopoxvirus , Humans , Retrospective Studies , Asymptomatic Infections , Biological Assay , Cross Reactions
2.
Analyst ; 142(15): 2725-2734, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28708188

ABSTRACT

A novel type of biosensor was assessed for application to the qualitative determination of circulating antibodies to herpes simplex virus type 2 (HSV-2). The device utilises a high activity HSV-2 type specific gG2 antigen for antibody capture and commercially available ELISA reagents. The study compares the diagnostic performance of a prototype HSV-2 biochip to well-established in vitro tests routinely applied in clinical procedures. A panel of human serum samples (n = 60) previously characterised for HSV-2 serological status using the DiaSorin LIAISON® HSV-2 chemiluminescent immunoassay were assayed on the HSV-2 biochip and the Focus Diagnostics HerpeSelect® 2 ELISA IgG kit to determine concordance with the predicate test method. Sensitivity and specificity of the HSV-2 biochip were found comparable to both the DiaSorin and Focus test methods. Sample index values calculated from the immunoassay response of the biochip's coulometric sensors indicated a high degree of linear correlation of the dataset with the corresponding index values from the DiaSorin LIAISON® test (r2 0.8799) and Focus HerpeSelect® test (r2 0.8794). The HSV-2 biochip demonstrated excellent diagnostic performance in qualitative and semi-quantitative measurements, matching closely the performance of two diagnostic industry standard predicate methods.


Subject(s)
Antibodies, Viral/analysis , Biosensing Techniques/instrumentation , Herpes Simplex/diagnosis , Herpesvirus 2, Human , Immunoglobulin G/analysis , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/blood , Sensitivity and Specificity
3.
medRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162953

ABSTRACT

In 2022 the World Health Organization declared a Public Health Emergency for an outbreak of mpox, the zoonotic Orthopoxvirus (OPV) affecting at least 103 non-endemic locations world-wide. Serologic detection of mpox infection is problematic, however, due to considerable antigenic and serologic cross-reactivity among OPVs and smallpox-vaccinated individuals. In this report, we developed a high-throughput multiplex microsphere immunoassay (MIA) using a combination of mpox-specific peptides and cross-reactive OPV proteins that results in the specific serologic detection of mpox infection with 93% sensitivity and 98% specificity. The New York State Non-Vaccinia Orthopoxvirus Microsphere Immunoassay is an important diagnostic tool to detect subclinical mpox infection and understand the extent of mpox spread in the community through retrospective analysis.

SELECTION OF CITATIONS
SEARCH DETAIL