ABSTRACT
Detailed knowledge of how diversity in the sequence of the human genome affects phenotypic diversity depends on a comprehensive and reliable characterization of both sequences and phenotypic variation. Over the past decade, insights into this relationship have been obtained from whole-exome sequencing or whole-genome sequencing of large cohorts with rich phenotypic data1,2. Here we describe the analysis of whole-genome sequencing of 150,119 individuals from the UK Biobank3. This constitutes a set of high-quality variants, including 585,040,410 single-nucleotide polymorphisms, representing 7.0% of all possible human single-nucleotide polymorphisms, and 58,707,036 indels. This large set of variants allows us to characterize selection based on sequence variation within a population through a depletion rank score of windows along the genome. Depletion rank analysis shows that coding exons represent a small fraction of regions in the genome subject to strong sequence conservation. We define three cohorts within the UK Biobank: a large British Irish cohort, a smaller African cohort and a South Asian cohort. A haplotype reference panel is provided that allows reliable imputation of most variants carried by three or more sequenced individuals. We identified 895,055 structural variants and 2,536,688 microsatellites, groups of variants typically excluded from large-scale whole-genome sequencing studies. Using this formidable new resource, we provide several examples of trait associations for rare variants with large effects not found previously through studies based on whole-exome sequencing and/or imputation.
Subject(s)
Biological Specimen Banks , Databases, Genetic , Genetic Variation , Genome, Human , Genomics , Whole Genome Sequencing , Africa/ethnology , Asia/ethnology , Cohort Studies , Conserved Sequence , Exons/genetics , Genome, Human/genetics , Haplotypes/genetics , Humans , INDEL Mutation , Ireland/ethnology , Microsatellite Repeats , Polymorphism, Single Nucleotide/genetics , United KingdomABSTRACT
The complex structure and function of low density lipoprotein receptor (LDLR) makes classification of protein-coding missense variants challenging. Deep generative models, including Evolutionary model of Variant Effect (EVE), Evolutionary Scale Modeling (ESM), and AlphaFold 2 (AF2), have enabled significant progress in the prediction of protein structure and function. ESM and EVE directly estimate the likelihood of a variant sequence but are purely data-driven and challenging to interpret. AF2 predicts LDLR structures, but variant effects are explicitly modeled by estimating changes in stability. We tested the effectiveness of these models for predicting variant pathogenicity compared to established methods. AF2 produced two distinct conformations based on a novel hinge mechanism. Within ESM's hidden space, benign and pathogenic variants had different distributions. In EVE, these distributions were similar. EVE and ESM were comparable to Polyphen-2, SIFT, REVEL, and Primate AI for predicting binary classifications in ClinVar. However, they were more strongly correlated with experimental measures of LDL uptake. AF2 poorly performed in these tasks. Using the UK Biobank to compare association with clinical phenotypes, ESM and EVE were more strongly associated with serum LDL-C than Polyphen-2. ESM was able to identify variants with more extreme LDL-C levels than EVE and had a significantly stronger association with atherosclerotic cardiovascular disease. In conclusion, AF2 predicted LDLR structures do not accurately model variant pathogenicity. ESM and EVE are competitive with prior scoring methods for prediction based on binary classifications in ClinVar but are superior based on correlations with experimental assays and clinical phenotypes.
Subject(s)
Models, Molecular , Receptors, LDL , Virulence , Receptors, LDL/chemistry , Receptors, LDL/genetics , Protein Structure, Tertiary , Genetic Variation , Virulence/genetics , Phenotype , Humans , Cardiovascular Diseases/physiopathologyABSTRACT
BACKGROUND: Promoting patients' sense of security is among the goals of nursing care within heart failure management. OBJECTIVE: The aim of this study was to examine the role of sense of security in the relationship between self-care behavior and health status of patients with heart failure. METHODS: Patients recruited from a heart failure clinic in Iceland answered a questionnaire about their self-care (European Heart Failure Self-care Behavior Scale; possible scores, 0-100), their sense of security (Sense of Security in Care-Patients' Evaluation; possible scores, 1-100), and their health status (Kansas City Cardiomyopathy Questionnaire, including symptoms, physical limitations, quality of life, social limitations, and self-efficacy domains; possible scores, 0-100). Clinical data were extracted from electronic patient records. Regression analysis was used to examine the mediation effect of sense of security on the relationship between self-care and health status. RESULTS: The patients (N = 220; mean [SD] age, 73.6 [13.8] years; 70% male, 49% in New York Heart Association functional class III) reported a high sense of security (mean [SD], 83.2 [15.2]) and inadequate self-care (mean [SD], 57.2 [22.0]); their health status, as assessed by all domains of the Kansas City Cardiomyopathy Questionnaire, was fair to good except for self-efficacy, which was good to excellent. Self-care was associated with health status ( P < .01) and sense of security ( P < .001). Regression analysis confirmed the mediating effect of sense of security on the relationship between self-care and health status. CONCLUSIONS: Sense of security in patients with heart failure is an important part of daily life and contributes to better health status. Heart failure management should not only support self-care but also aim to strengthen sense of security through positive care interaction (provider-patient communication) and the promotion of patients' self-efficacy, and by facilitating access to care.
Subject(s)
Cardiomyopathies , Heart Failure , Humans , Male , Aged , Female , Quality of Life , Cross-Sectional Studies , Self Care , Health Status , Surveys and Questionnaires , Heart Failure/therapyABSTRACT
Polygenic scores (PGS) for coronary heart disease (CHD) are constructed using GWAS summary statistics for CHD. However, pleiotropy is pervasive in biology and disease-associated variants often share etiologic pathways with multiple traits. Therefore, incorporating GWAS summary statistics of additional traits could improve the performance of PGS for CHD. Using lasso regression models, we developed two multi-PGS for CHD: 1) multiPGSCHD, utilizing GWAS summary statistics for CHD, its risk factors, and other ASCVD as training data and the UK Biobank for tuning, and 2) extendedPGSCHD, using existing PGS for a broader range of traits in the PGS Catalog as training data and the Atherosclerosis Risk in Communities Study (ARIC) cohort for tuning. We evaluated the performance of multiPGSCHD and extendedPGSCHD in the Mayo Clinic Biobank, an independent cohort of 43,578 adults of European ancestry which included 4,479 CHD cases and 39,099 controls. In the Mayo Clinic Biobank, a 1 SD increase in multiPGSCHD and extendedPGSCHD was associated with a 1.66-fold (95% CI: 1.60-1.71) and 1.70-fold (95% CI: 1.64-1.76) increased odds of CHD, respectively, in models that included age, sex, and 10 PCs, whereas an already published PGS for CHD (CHD_PRSCS) increased the odds by 1.50 (95% CI: 1.45-1.56). In the highest deciles of extendedPGSCHD, multiPGSCHD, and CHD_PRSCS, 18.4%, 17.5%, and 16.3% of patients had CHD, respectively.
Subject(s)
Coronary Disease , Adult , Humans , Coronary Disease/genetics , Risk Factors , PhenotypeABSTRACT
BACKGROUND: Coronary atherosclerotic burden and adverse coronary heart disease events are related phenotypes with likely shared genetic cause. METHODS: We analyzed 6021 patients with available coronary angiography, genotyping, and exome sequencing data. We tested for associations of polygenic risk scores for coronary heart disease (PRSCHD) with multiple measures of coronary artery disease (CAD) severity. We assessed the joint associations of PRSCHD and pathogenic/likely pathogenic variants in 3 familial hypercholesterolemia genes, with CAD severity. We performed mediation analyses to explore whether CAD severity mediated the association of PRSCHD with prevalent coronary heart disease and incident myocardial infarction. RESULTS: A 1-SD increase in PRSCHD was associated with multiple measures of CAD severity, including the log Gensini score (ß, 0.31 [95% CI, 0.28-0.33]). Carrying a pathogenic/likely pathogenic familial hypercholesterolemia variant was associated with a higher log Gensini score after adjustment for PRSCHD (ß, 0.21 [95% CI, 0.03-0.38]). A 1-SD increase in PRSCHD was associated with incident myocardial infarction over a mean follow-up of 9.2 years (hazard ratio, 1.20 [95% CI, 1.13-1.27]; P=5×10-10), and the Gensini score mediated 90% of this association. CONCLUSIONS: PRSCHD was associated with multiple measures of CAD severity. The association of PRSCHD with incident myocardial infarction was almost fully mediated by CAD severity, indicating a considerable genetic overlap between the 2 phenotypes.
Subject(s)
Coronary Artery Disease , Multifactorial Inheritance , Severity of Illness Index , Humans , Coronary Artery Disease/genetics , Coronary Artery Disease/pathology , Female , Male , Middle Aged , Aged , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Genetic Predisposition to Disease , Risk Factors , Hyperlipoproteinemia Type II/genetics , Proprotein Convertase 9/geneticsABSTRACT
Background: The joint effects of polygenic risk and social determinants of health (SDOH) on coronary heart disease (CHD) in the United States are unknown. Methods: In 67,256 All of Us (AoU) participants with available SDOH data, we ascertained self-reported race/ethnicity and calculated a polygenic risk score for CHD (PRS CHD ). We used 90 SDOH survey questions to develop an SDOH score for CHD (SDOH CHD ). We assessed the distribution of SDOH CHD across self-reported races and US states. We tested the joint association of SDOH CHD and PRS CHD with CHD in regression models that included clinical risk factors. Results: SDOH CHD was highest in self-reported black and Hispanic people. Self-reporting as black was associated with higher odds of CHD but not after adjustment for SDOH CHD . Median SDOH CHD values varied by US state and were associated with heart disease mortality. A 1-SD increase in SDOH CHD was associated with CHD (OR=1.36; 95% CI, 1.29 to 1.46) and incident CHD (HR=1.73; 95% CI, 1.27 to 2.35) in models that included PRS CHD and clinical risk factors. Among people in the top 20% of PRS CHD , CHD prevalence was 4.8% and 7.8% in the bottom and top 20% of SDOH CHD , respectively. Conclusions: Increased odds of CHD in self-reported black people are likely due to higher SDOH burden. SDOH and PRS were independently associated with CHD in the US. Our findings emphasize the need to consider both PRS and SDOH for equitable disease risk assessment.
ABSTRACT
Background: The MI-GENES clinical trial (NCT01936675), in which participants at intermediate risk of coronary heart disease (CHD) were randomized to receive a Framingham risk score (FRSg, n=103), or an integrated risk score (IRSg, n=104) that additionally included a polygenic risk score (PRS), demonstrated that after 6 months, participants randomized to IRSg had higher statin initiation and lower low-density lipoprotein cholesterol (LDL-C). Objectives: In a post hoc 10-year follow-up analysis of the MI-GENES trial, we investigated whether disclosure of a PRS for CHD was associated with a reduction in adverse cardiovascular events. Methods: Participants were followed from randomization beginning in October 2013 until September 2023 to ascertain adverse cardiovascular events, testing for CHD, and changes in risk factors, by blinded review of electronic health records. The primary outcome was the time from randomization to the occurrence of the first major adverse cardiovascular event (MACE), defined as cardiovascular death, non-fatal myocardial infarction, coronary revascularization, and non-fatal stroke. Statistical analyses were conducted using Cox proportional hazards regression and linear mixed-effects models. Results: We followed all 203 participants who completed the MI-GENES trial, 100 in FRSg and 103 in IRSg (mean age at the end of follow-up: 68.2±5.2, 48% male). During a median follow-up of 9.5 years, 9 MACEs occurred in FRSg and 2 in IRSg (hazard ratio (HR), 0.20; 95% confidence interval (CI), 0.04 to 0.94; P=0.042). In FRSg, 47 (47%) underwent at least one test for CHD, compared to 30 (29%) in IRSg (HR, 0.51; 95% CI, 0.32 to 0.81; P=0.004). IRSg participants had a longer duration of statin therapy during the first four years post-randomization and a greater reduction in LDL-C for up to 3 years post-randomization. No significant differences between the two groups were observed for hemoglobin A1C, systolic and diastolic blood pressures, weight, and smoking cessation rate during follow-up. Conclusions: The disclosure of an IRS that included a PRS to individuals at intermediate risk for CHD was associated with a lower incidence of MACE after a decade of follow-up, likely due to a higher rate of initiation and longer duration of statin therapy, leading to lower LDL-C levels.
ABSTRACT
Background Long-QT syndrome (LQTS) is a cardiac repolarization abnormality that can lead to sudden cardiac death. The most common causes are rare coding variants in the genes KCNQ1, KCNH2, and SCN5A. The data on LQTS epidemiology are limited, and information on expressivity and penetrance of pathogenic variants is sparse. Methods and Results We screened for rare coding variants associated with the corrected QT (QTc) interval in Iceland. We explored the frequency of the identified variants, their penetrance, and their association with severe events. Twelve variants were associated with the QTc interval. Five in KCNQ1, 3 in KCNH2, 2 in cardiomyopathy genes MYBPC3 and PKP2, and 2 in genes where coding variants have not been associated with the QTc interval, ISOC1 and MYOM2. The combined carrier frequency of the 8 variants in the previously known LQTS genes was 530 per 100 000 individuals (1:190). p.Tyr315Cys and p.Leu273Phe in KCNQ1 were associated with having a mean QTc interval longer than 500 ms (P=4.2×10-7; odds ratio [OR], 38.6; P=8.4×10-10, OR, 26.5; respectively), and p.Leu273Phe was associated with sudden cardiac death (P=0.0034; OR, 2.99). p.Val215Met in KCNQ1 was carried by 1 in 280 Icelanders, had a smaller effect on the QTc interval (P=1.8×10-44; effect, 22.8 ms), and did not associate with severe clinical events. Conclusions The carrier frequency of associating variants in LQTS genes was higher than previous estimates of the prevalence of LQTS. The variants have variable effects on the QTc interval, and carriers of p.Tyr315Cys and p.Leu273Phe have a more severe disease than carriers of p.Val215Met. These data could lead to improved identification, risk stratification, and a more precise clinical approach to those with QTc prolongation.
Subject(s)
KCNQ1 Potassium Channel , Long QT Syndrome , Humans , Iceland/epidemiology , KCNQ1 Potassium Channel/genetics , Long QT Syndrome/diagnosis , Long QT Syndrome/epidemiology , Long QT Syndrome/genetics , Death, Sudden, Cardiac/epidemiology , Death, Sudden, Cardiac/etiology , Electrocardiography , MutationABSTRACT
BACKGROUND: Persistent symptoms are common after SARS-CoV-2 infection but correlation with objective measures is unclear. METHODS: We invited all 3098 adults who tested SARS-CoV-2 positive in Iceland before October 2020 to the deCODE Health Study. We compared multiple symptoms and physical measures between 1706 Icelanders with confirmed prior infection (cases) who participated, and 619 contemporary and 13,779 historical controls. Cases participated in the study 5-18 months after infection. RESULTS: Here we report that 41 of 88 symptoms are associated with prior infection, most significantly disturbed smell and taste, memory disturbance, and dyspnea. Measured objectively, cases had poorer smell and taste results, less grip strength, and poorer memory recall. Differences in grip strength and memory recall were small. No other objective measure associated with prior infection including heart rate, blood pressure, postural orthostatic tachycardia, oxygen saturation, exercise tolerance, hearing, and traditional inflammatory, cardiac, liver, and kidney blood biomarkers. There was no evidence of more anxiety or depression among cases. We estimate the prevalence of long Covid to be 7% at a median of 8 months after infection. CONCLUSIONS: We confirm that diverse symptoms are common months after SARS-CoV-2 infection but find few differences between cases and controls in objective parameters measured. These discrepancies between symptoms and physical measures suggest a more complicated contribution to symptoms related to prior infection than is captured with conventional tests. Traditional clinical assessment is not expected to be particularly informative in relating symptoms to a past SARS-CoV-2 infection.
Persistent symptoms are commonly reported after SARS-CoV-2 infection, and this is often described as long Covid. We compared different symptoms reported following SARS-CoV- 2 infection with the results obtained during various medical evaluations that are often used to assess health, such as blood tests, smell tests, taste tests, hearing tests, etc. We compared symptoms and test results between 1,706 Icelanders who had been infected previously with SARS-CoV-2 infection (cases) and 14,398 individuals who had not been infected (controls). Out of 88 assessed symptoms, 41 were more common in cases than controls. However, relatively few differences were seen in the results obtained from the various medical evaluations (cases had poorer smell and taste test results, slightly less grip strength, and slightly poorer memory recall than controls). The differences seen between symptoms and results of medical evaluations suggests that conventional clinical tests may not be informative in relating symptoms to a past SARS-CoV-2 infection.
ABSTRACT
The characteristic lobulated nuclear morphology of granulocytes is partially determined by composition of nuclear envelope proteins. Abnormal nuclear morphology is primarily observed as an increased number of hypolobulated immature neutrophils, called band cells, during infection or in rare envelopathies like Pelger-Huët anomaly. To search for sequence variants affecting nuclear morphology of granulocytes, we performed a genome-wide association study using band neutrophil fraction from 88,101 Icelanders. We describe 13 sequence variants affecting band neutrophil fraction at nine loci. Five of the variants are at the Lamin B receptor (LBR) locus, encoding an inner nuclear membrane protein. Mutations in LBR are linked to Pelger-Huët anomaly. In addition, we identify cosegregation of a rare stop-gain sequence variant in LBR and Pelger Huët anomaly in an Icelandic eight generation pedigree, initially reported in 1963. Two of the other loci include genes which, like LBR, play a role in the nuclear membrane function and integrity. These GWAS results highlight the role proteins of the inner nuclear membrane have as important for neutrophil nuclear morphology.
Subject(s)
Pelger-Huet Anomaly , Genome-Wide Association Study , Granulocytes/metabolism , Humans , Iceland , Neutrophils/metabolism , Pelger-Huet Anomaly/geneticsABSTRACT
Back pain is a common and debilitating disorder with largely unknown underlying biology. Here we report a genome-wide association study of back pain using diagnoses assigned in clinical practice; dorsalgia (119,100 cases, 909,847 controls) and intervertebral disc disorder (IDD) (58,854 cases, 922,958 controls). We identify 41 variants at 33 loci. The most significant association (ORIDD = 0.92, P = 1.6 × 10-39; ORdorsalgia = 0.92, P = 7.2 × 10-15) is with a 3'UTR variant (rs1871452-T) in CHST3, encoding a sulfotransferase enzyme expressed in intervertebral discs. The largest effects on IDD are conferred by rare (MAF = 0.07 - 0.32%) loss-of-function (LoF) variants in SLC13A1, encoding a sodium-sulfate co-transporter (LoF burden OR = 1.44, P = 3.1 × 10-11); variants that also associate with reduced serum sulfate. Genes implicated by this study are involved in cartilage and bone biology, as well as neurological and inflammatory processes.
Subject(s)
Intervertebral Disc Degeneration/genetics , Intervertebral Disc Displacement/genetics , Intervertebral Disc/metabolism , Sodium Sulfate Cotransporter/genetics , Sodium Sulfate Cotransporter/metabolism , Sulfates/metabolism , 3' Untranslated Regions , Bone and Bones/metabolism , Genome-Wide Association Study , Humans , Symporters/genetics , Symporters/metabolismABSTRACT
Nonalcoholic fatty liver (NAFL) and its sequelae are growing health problems. We performed a genome-wide association study of NAFL, cirrhosis and hepatocellular carcinoma, and integrated the findings with expression and proteomic data. For NAFL, we utilized 9,491 clinical cases and proton density fat fraction extracted from 36,116 liver magnetic resonance images. We identified 18 sequence variants associated with NAFL and 4 with cirrhosis, and found rare, protective, predicted loss-of-function variants in MTARC1 and GPAM, underscoring them as potential drug targets. We leveraged messenger RNA expression, splicing and predicted coding effects to identify 16 putative causal genes, of which many are implicated in lipid metabolism. We analyzed levels of 4,907 plasma proteins in 35,559 Icelanders and 1,459 proteins in 47,151 UK Biobank participants, identifying multiple proteins involved in disease pathogenesis. We show that proteomics can discriminate between NAFL and cirrhosis. The present study provides insights into the development of noninvasive evaluation of NAFL and new therapeutic options.
Subject(s)
Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/genetics , Proteomics , Genome-Wide Association Study , Liver/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolismABSTRACT
Predicting all-cause mortality risk is challenging and requires extensive medical data. Recently, large-scale proteomics datasets have proven useful for predicting health-related outcomes. Here, we use measurements of levels of 4,684 plasma proteins in 22,913 Icelanders to develop all-cause mortality predictors both for short- and long-term risk. The participants were 18-101 years old with a mean follow up of 13.7 (sd. 4.7) years. During the study period, 7,061 participants died. Our proposed predictor outperformed, in survival prediction, a predictor based on conventional mortality risk factors. We could identify the 5% at highest risk in a group of 60-80 years old, where 88% died within ten years and 5% at the lowest risk where only 1% died. Furthermore, the predicted risk of death correlates with measures of frailty in an independent dataset. Our results show that the plasma proteome can be used to assess general health and estimate the risk of death.
Subject(s)
Biomarkers/blood , Blood Proteins/analysis , Frailty/mortality , Proteomics/methods , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Iceland , Kaplan-Meier Estimate , Male , Middle Aged , Prognosis , Risk , Risk Assessment , Risk Factors , Young AdultABSTRACT
Platelets play an important role in hemostasis and other aspects of vascular biology. We conducted a meta-analysis of platelet count GWAS using data on 536,974 Europeans and identified 577 independent associations. To search for mechanisms through which these variants affect platelets, we applied cis-expression quantitative trait locus, DEPICT and IPA analyses and assessed genetic sharing between platelet count and various traits using polygenic risk scoring. We found genetic sharing between platelet count and counts of other blood cells (except red blood cells), in addition to several other quantitative traits, including markers of cardiovascular, liver and kidney functions, height, and weight. Platelet count polygenic risk score was predictive of myeloproliferative neoplasms, rheumatoid arthritis, ankylosing spondylitis, hypertension, and benign prostate hyperplasia. Taken together, these results advance understanding of diverse aspects of platelet biology and how they affect biological processes in health and disease.
Subject(s)
Biomarkers/analysis , Genetic Variation , Phenotype , Platelet Count , Quantitative Trait Loci , Female , Humans , MaleABSTRACT
The success of genome-wide association studies (GWAS) in identifying common, low-penetrance variant-cancer associations for the past decade is undisputed. However, discovering additional high-penetrance cancer mutations in unknown cancer predisposing genes requires detection of variant-cancer association of ultra-rare coding variants. Consequently, large-scale next-generation sequence data with associated phenotype information are needed. Here, we used genotype data on 166,281 Icelanders, of which, 49,708 were whole-genome sequenced and 408,595 individuals from the UK Biobank, of which, 41,147 were whole-exome sequenced, to test for association between loss-of-function burden in autosomal genes and basal cell carcinoma (BCC), the most common cancer in Caucasians. A total of 25,205 BCC cases and 683,058 controls were tested. Rare germline loss-of-function variants in PTPN14 conferred substantial risks of BCC (OR, 8.0; P = 1.9 × 10-12), with a quarter of carriers getting BCC before age 70 and over half in their lifetime. Furthermore, common variants at the PTPN14 locus were associated with BCC, suggesting PTPN14 as a new, high-impact BCC predisposition gene. A follow-up investigation of 24 cancers and three benign tumor types showed that PTPN14 loss-of-function variants are associated with high risk of cervical cancer (OR, 12.7, P = 1.6 × 10-4) and low age at diagnosis. Our findings, using power-increasing methods with high-quality rare variant genotypes, highlight future prospects for new discoveries on carcinogenesis. SIGNIFICANCE: This study identifies the tumor-suppressor gene PTPN14 as a high-impact BCC predisposition gene and indicates that inactivation of PTPN14 by germline sequence variants may also lead to increased risk of cervical cancer.
Subject(s)
Carcinoma, Basal Cell/genetics , Loss of Function Mutation , Penetrance , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Skin Neoplasms/genetics , Uterine Cervical Neoplasms/genetics , Age Factors , Carcinoma, Basal Cell/epidemiology , Case-Control Studies , Female , Gene Frequency , Genes, Tumor Suppressor , Genetic Predisposition to Disease , Genetic Testing , Genome-Wide Association Study , Genotype , Germ-Line Mutation , Humans , Iceland/epidemiology , Male , Odds Ratio , Skin Neoplasms/epidemiology , Tissue Banks/statistics & numerical data , United Kingdom/epidemiology , Uterine Cervical Neoplasms/epidemiology , Exome Sequencing/statistics & numerical data , Whole Genome Sequencing/statistics & numerical dataABSTRACT
Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3' UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFßR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis.
Subject(s)
Airway Remodeling/genetics , Asthma/genetics , Ki-1 Antigen/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , T-Lymphocytes/immunology , 3' Untranslated Regions/genetics , Airway Remodeling/immunology , Asthma/immunology , Eosinophils , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Iceland , Ki-1 Antigen/immunology , Ki-1 Antigen/metabolism , Leukocyte Count , MicroRNAs/metabolism , Polymorphism, Single Nucleotide/immunology , Quantitative Trait Loci/immunology , Receptor, Transforming Growth Factor-beta Type I/immunology , Receptor, Transforming Growth Factor-beta Type I/metabolism , United KingdomABSTRACT
Features of the QRS complex of the electrocardiogram, reflecting ventricular depolarisation, associate with various physiologic functions and several pathologic conditions. We test 32.5 million variants for association with ten measures of the QRS complex in 12 leads, using 405,732 electrocardiograms from 81,192 Icelanders. We identify 190 associations at 130 loci, the majority of which have not been reported before, including associations with 21 rare or low-frequency coding variants. Assessment of genes expressed in the heart yields an additional 13 rare QRS coding variants at 12 loci. We find 51 unreported associations between the QRS variants and echocardiographic traits and cardiovascular diseases, including atrial fibrillation, complete AV block, heart failure and supraventricular tachycardia. We demonstrate the advantage of in-depth analysis of the QRS complex in conjunction with other cardiovascular phenotypes to enhance our understanding of the genetic basis of myocardial mass, cardiac conduction and disease.
Subject(s)
Electrocardiography , Heart/physiology , Proteins/genetics , Atrial Fibrillation/diagnosis , Atrial Fibrillation/genetics , Female , Gene Expression Regulation , Genetic Variation , Genome-Wide Association Study , Heart/physiopathology , Heart Failure/diagnosis , Heart Failure/genetics , Humans , Iceland , Male , Tachycardia, Supraventricular/diagnosis , Tachycardia, Supraventricular/geneticsABSTRACT
The original HTML version of this Article was updated shortly after publication to add links to the Peer Review file.In addition, affiliations 16 and 17 incorrectly read 'School of Medicine Sydney, University of Notre Dame Australia, Sydney, WA, 6160, Australia' and 'St Vincent's Clinical School, University of New South Wales Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.' This has now been corrected in both the PDF and HTML versions of the Article.
ABSTRACT
Bone area is one measure of bone size that is easily derived from dual-energy X-ray absorptiometry (DXA) scans. In a GWA study of DXA bone area of the hip and lumbar spine (N ≥ 28,954), we find thirteen independent association signals at twelve loci that replicate in samples of European and East Asian descent (N = 13,608 - 21,277). Eight DXA area loci associate with osteoarthritis, including rs143384 in GDF5 and a missense variant in COL11A1 (rs3753841). The strongest DXA area association is with rs11614913[T] in the microRNA MIR196A2 gene that associates with lumbar spine area (P = 2.3 × 10-42, ß = -0.090) and confers risk of hip fracture (P = 1.0 × 10-8, OR = 1.11). We demonstrate that the risk allele is less efficient in repressing miR-196a-5p target genes. We also show that the DXA area measure contributes to the risk of hip fracture independent of bone density.
Subject(s)
Bone Density/genetics , Hip Fractures/genetics , MicroRNAs/genetics , Osteoarthritis/genetics , Absorptiometry, Photon , Adult , Aged , Aged, 80 and over , Alleles , Body Height/genetics , Bone and Bones/diagnostic imaging , Bone and Bones/physiology , Case-Control Studies , Collagen Type XI/genetics , Female , Follow-Up Studies , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Growth Differentiation Factor 5/genetics , Hip Fractures/epidemiology , Humans , Male , Middle Aged , Osteoarthritis/epidemiology , Risk FactorsABSTRACT
Osteoarthritis has a highly negative impact on quality of life because of the associated pain and loss of joint function. Here we describe the largest meta-analysis so far of osteoarthritis of the hip and the knee in samples from Iceland and the UK Biobank (including 17,151 hip osteoarthritis patients, 23,877 knee osteoarthritis patients, and more than 562,000 controls). We found 23 independent associations at 22 loci in the additive meta-analyses, of which 16 of the loci were novel: 12 for hip and 4 for knee osteoarthritis. Two associations are between rare or low-frequency missense variants and hip osteoarthritis, affecting the genes SMO (rs143083812, frequency 0.11%, odds ratio (OR) = 2.8, P = 7.9 × 10-12, p.Arg173Cys) and IL11 (rs4252548, frequency 2.08%, OR = 1.30, P = 2.1 × 10-11, p.Arg112His). A common missense variant in the COL11A1 gene also associates with hip osteoarthritis (rs3753841, frequency 61%, P = 5.2 × 10-10, OR = 1.08, p.Pro1284Leu). In addition, using a recessive model, we confirm an association between hip osteoarthritis and a variant of CHADL1 (rs117018441, P = 1.8 × 10-25, OR = 5.9). Furthermore, we observe a complex relationship between height and risk of osteoarthritis.