Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Exp Eye Res ; 81(2): 147-58, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16011835

ABSTRACT

The role of hemodynamic forces and other signals from circulating blood in guiding the development of the retinal vasculature was examined by following the growth of these vessels in organ cultures. Retinal vascular development in organ cultures was monitored by immunofluorescent staining of retinal whole-mounts using antibodies against ICAM-2, a specific marker for endothelial cells and by vascular adenosine disphosphatase activity. Under culture conditions, the retinal vasculature from mice at postnatal day 3 (P3) grew from the optic nerve area to the edge of the retina in a manner similar to that observed in vivo. Both inner and outer vascular plexuses formed in retinal explants. Within the first few days of organ culture, the initial uniform meshwork of blood vessels was reorganized into arterioles, venules, and capillaries. As in animals, the initial retinal vascular plexus contained abundant vessels, and afterward some vessels regressed leading to the formation of a mature vascular bed. Changes in vascular density due to blood vessel growth and remodeling were confirmed by RT-PCR and Western blot analyses of ICAM-2 mRNA and protein levels, respectively. In addition, during in vitro retinal vascularization, arterioles acquired mural cell coverage, as shown by positive staining for alpha-smooth muscle actin. Thus, blood flow and blood-derived signals were not required for the development and maturation of retinal vessels. In contrast, stability of blood vessels in retinal explants was tightly regulated by endogenous levels of vascular endothelial growth factor-A (VEGF-A). VEGF-A was expressed in the explants throughout the culture period, and addition of neutralizing antibodies against VEGF-A to the organ culture caused a severe regression of blood vessels from the vascular front toward the optic nerve. In contrast, addition of anti-FGF-2 antibodies had no effect on the developing vasculature. Thus, retinal vascular development is dependent on local VEGF-A signals rather than systemic signals.


Subject(s)
Retinal Vessels/growth & development , Vascular Endothelial Growth Factor A/physiology , Actins/metabolism , Aging/metabolism , Animals , Blotting, Western , Fibroblast Growth Factor 2/metabolism , Mice , Neovascularization, Physiologic , Organ Culture Techniques , Receptors, Vascular Endothelial Growth Factor/metabolism , Retinal Vessels/metabolism , Reverse Transcriptase Polymerase Chain Reaction/methods , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL