ABSTRACT
Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.
Subject(s)
Heart Valve Diseases , Mitral Valve , Humans , Mice , Animals , Mitral Valve/metabolism , Heart Valve Diseases/pathology , Heart Ventricles/metabolism , Myocardium/metabolism , Mice, Knockout , Transcription Factors/metabolismABSTRACT
BACKGROUND: Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF). METHODS AND RESULTS: A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study. Tau protein expression was examined together with its distribution, and in vitro tau-related pathophysiological mechanisms were identified using a variety of biochemical, imaging, and functional approaches. A novel tau-targeting immunotherapy was tested to explore tau-targeted therapeutic potential in HF. Tau is expressed in normal and diseased human hearts, in contradistinction to the current oft-cited observation that tau is expressed specifically in the brain. Notably, the main cardiac isoform is high-molecular-weight (HMW) tau (also known as big tau), and hyperphosphorylated tau segregates in aggregates in HF and AD hearts. As previously described for amyloid-beta, the tauopathy phenotype in human myocardium is of diastolic dysfunction. Perturbation in the tubulin code, specifically a loss of tyrosinated microtubules, emerged as a potential mechanism of myocardial tauopathy. Monoclonal anti-tau antibody therapy improved myocardial function and clearance of toxic aggregates in mice, supporting tau as a potential target for novel HF immunotherapy. CONCLUSION: The study presents new mechanistic evidence and potential treatment for the brain-heart tauopathy axis in myocardial and brain degenerative diseases and ageing.
Subject(s)
Alzheimer Disease , Tauopathies , Humans , Mice , Animals , tau Proteins/chemistry , tau Proteins/genetics , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Tauopathies/metabolism , Tauopathies/pathology , Microtubules/metabolism , Microtubules/pathology , Myocardium/pathologyABSTRACT
AIMS: Mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of >2% in the general adult population. Despite this high incidence, there is a limited understanding of the molecular mechanism of this disease, and no medical therapy is available for this disease. We aimed to elucidate the genetic basis of MVP in order to better understand this complex disorder. METHODS AND RESULTS: We performed a meta-analysis of six genome-wide association studies that included 4884 cases and 434 649 controls. We identified 14 loci associated with MVP in our primary analysis and 2 additional loci associated with a subset of the samples that additionally underwent mitral valve surgery. Integration of epigenetic, transcriptional, and proteomic data identified candidate MVP genes including LMCD1, SPTBN1, LTBP2, TGFB2, NMB, and ALPK3. We created a polygenic risk score (PRS) for MVP and showed an improved MVP risk prediction beyond age, sex, and clinical risk factors. CONCLUSION: We identified 14 genetic loci that are associated with MVP. Multiple analyses identified candidate genes including two transforming growth factor-Ć signalling molecules and spectrin Ć. We present the first PRS for MVP that could eventually aid risk stratification of patients for MVP screening in a clinical setting. These findings advance our understanding of this common valvular heart disease and may reveal novel therapeutic targets for intervention.
Subject(s)
Mitral Valve Prolapse , Adult , Genetic Loci/genetics , Genome-Wide Association Study , Humans , Latent TGF-beta Binding Proteins/genetics , Mitral Valve Prolapse/genetics , Proteomics , Risk FactorsABSTRACT
Cancer is the second most common cause of death in the United States, accounting for 602,350 deaths in 2020. Cancer-related death rates have declined by 27% over the past two decades, partially due to the identification of novel anti-cancer drugs. Despite improvements in cancer treatment, newly approved oncology drugs are associated with increased toxicity risk. These toxicities may be mitigated by pharmacokinetic optimization and reductions in off-target interactions. As such, there is a need for early-stage implementation of pharmacokinetic (PK) prediction tools. Several PK prediction platforms exist, including pkCSM, SuperCypsPred, Pred-hERG, Similarity Ensemble Approach (SEA), and SwissADME. These tools can be used in screening hits, allowing for the selection of compounds were reduced toxicity and/or risk of attrition. In this short commentary, we used PK prediction tools in the optimization of mitogen activated extracellular signal-related kinase kinase 1 (MEK1) inhibitors. In doing so, we identified MEK1 inhibitors with retained activity and optimized predictive PK properties, devoid of hERG inhibition. These data support the use of publicly available PK prediction platforms in early-stage drug discovery to design safer drugs.
Subject(s)
Antineoplastic Agents , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic useABSTRACT
The Ehlers-Danlos syndromes (EDS) are a group of heritable, connective tissue disorders characterized by joint hypermobility, skin hyperextensibility, and tissue fragility. There is phenotypic and genetic variation among the 13 subtypes. The initial genetic findings on EDS were related to alterations in fibrillar collagen, but the elucidation of the molecular basis of many of the subtypes revealed several genes not involved in collagen biosynthesis or structure. However, the genetic basis of the hypermobile type of EDS (hEDS) is still unknown. hEDS is the most common type of EDS and involves generalized joint hypermobility, musculoskeletal manifestations, and mild skin involvement along with the presence of several comorbid conditions. Variability in the spectrum and severity of symptoms and progression of patient phenotype likely depend on age, gender, lifestyle, and expression domains of the EDS genes during development and postnatal life. In this review, we summarize the current molecular, genetic, epidemiologic, and pathogenetic findings related to EDS with a focus on the hypermobile type.
Subject(s)
Ehlers-Danlos Syndrome , Joint Instability , Age Factors , Ehlers-Danlos Syndrome/diagnosis , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/metabolism , Ehlers-Danlos Syndrome/pathology , Humans , Joint Instability/diagnosis , Joint Instability/genetics , Joint Instability/metabolism , Joint Instability/pathology , Sex FactorsABSTRACT
BACKGROUND: Mitral valve prolapse (MVP) is a common and progressive cardiovascular disease with developmental origins. How developmental errors contribute to disease pathogenesis are not well understood. RESULTS: A multimeric complex was identified that consists of the MVP gene Dzip1, Cby1, and Ć-catenin. Co-expression during valve development revealed overlap at the basal body of the primary cilia. Biochemical studies revealed a DZIP1 peptide required for stabilization of the complex and suppression of Ć-catenin activities. Decoy peptides generated against this interaction motif altered nuclear vs cytosolic levels of Ć-catenin with effects on transcriptional activity. A mutation within this domain was identified in a family with inherited non-syndromic MVP. This novel mutation and our previously identified DZIP1S24R variant resulted in reduced DZIP1 and CBY1 stability and increased Ć-catenin activities. The Ć-catenin target gene, MMP2 was up-regulated in the Dzip1S14R/+ valves and correlated with loss of collagenous ECM matrix and myxomatous phenotype. CONCLUSION: Dzip1 functions to restrain Ć-catenin signaling through a CBY1 linker during cardiac development. Loss of these interactions results in increased nuclear Ć-catenin/Lef1 and excess MMP2 production, which correlates with developmental and postnatal changes in ECM and generation of a myxomatous phenotype.
Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Heart Valves/embryology , Mitral Valve Prolapse/metabolism , Organogenesis/physiology , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , HEK293 Cells , Heart Valves/metabolism , Humans , Mice , Mice, Knockout , Mitral Valve Prolapse/genetics , Phenotype , Signal Transduction/physiologyABSTRACT
Non-syndromic mitral valve prolapse (MVP) is the most common heart valve disease affecting 2.4% of the population. Recent studies have identified genetic defects in primary cilia as causative to MVP, although the mechanism of their action is currently unknown. Using a series of gene inactivation approaches, we define a paracrine mechanism by which endocardially-expressed Desert Hedgehog (DHH) activates primary cilia signaling on neighboring valve interstitial cells. High-resolution imaging and functional assays show that DHH de-represses smoothened at the primary cilia, resulting in kinase activation of RAC1 through the RAC1-GEF, TIAM1. Activation of this non-canonical hedgehog pathway stimulates α-smooth actin organization and ECM remodeling. Genetic or pharmacological perturbation of this pathway results in enlarged valves that progress to a myxomatous phenotype, similar to valves seen in MVP patients. These data identify a potential molecular origin for MVP as well as establish a paracrine DHH-primary cilium cross-talk mechanism that is likely applicable across developmental tissue types.
Subject(s)
Cilia/metabolism , Hedgehog Proteins/metabolism , Mitral Valve/embryology , Actins/metabolism , Animals , Extracellular Matrix/metabolism , Heart Valve Diseases , Hedgehog Proteins/physiology , Mice , Mitral Valve Prolapse/genetics , Mitral Valve Prolapse/metabolism , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , Myocytes, Smooth Muscle/metabolism , Neuropeptides/metabolism , Phenotype , Signal Transduction , Transcription Factors/metabolism , rac1 GTP-Binding Protein/metabolismABSTRACT
Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.
Subject(s)
Cadherins/genetics , Cadherins/metabolism , Mitral Valve Prolapse/genetics , Mitral Valve Prolapse/pathology , Mutation/genetics , Animals , Body Patterning/genetics , Cadherin Related Proteins , Cadherins/deficiency , Cell Movement/genetics , Chromosomes, Human, Pair 11/genetics , Female , Humans , Male , Mice , Mitral Valve/abnormalities , Mitral Valve/embryology , Mitral Valve/pathology , Mitral Valve/surgery , Pedigree , Phenotype , Protein Stability , RNA, Messenger/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolismABSTRACT
The exocyst is a highly conserved protein complex found in most eukaryotic cells and is associated with many functions, including protein translocation in the endoplasmic reticulum, vesicular basolateral targeting, and ciliogenesis in the kidney. To investigate the exocyst functions, here we exchanged proline for alanine in the highly conserved VXPX ciliary targeting motif of EXOC5 (exocyst complex component 5), a central exocyst gene/protein, and generated stable EXOC5 ciliary targeting sequence-mutated (EXOC5CTS-m) Madin-Darby canine kidney (MDCK) cells. The EXOC5CTS-m protein was stable and could bind other members of the exocyst complex. Culturing stable control, EXOC5-overexpressing (OE), Exoc5-knockdown (KD), and EXOC5CTS-m MDCK cells on Transwell filters, we found that primary ciliogenesis is increased in EXOC5 OE cells and inhibited in Exoc5-KD and EXOC5CTS-m cells. Growing cells in collagen gels until the cyst stage, we noted that EXOC5-OE cells form mature cysts with single lumens more rapidly than control cysts, whereas Exoc5-KD and EXOC5CTS-m MDCK cells failed to form mature cysts. Adding hepatocyte growth factor to induce tubulogenesis, we observed that EXOC5-OE cell cysts form tubules more efficiently than control MDCK cell cysts, EXOC5CTS-m MDCK cell cysts form significantly fewer tubules than control cell cysts, and Exoc5-KD cysts did not undergo tubulogenesis. Finally, we show that EXOC5 mRNA almost completely rescues the ciliary phenotypes in exoc5-mutant zebrafish, unlike the EXOC5CTS-m mRNA, which could not efficiently rescue the phenotypes. Taken together, these results indicate that the exocyst, acting through the primary cilium, is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis.
Subject(s)
Cilia/physiology , Cysts/pathology , Kidney Tubules/growth & development , Kidney/metabolism , Vesicular Transport Proteins/metabolism , Animals , DNA, Complementary/genetics , Dogs , Gene Knockdown Techniques , Humans , Kidney Diseases/pathology , Madin Darby Canine Kidney Cells , Mutagenesis, Site-Directed , Protein Binding , Protein Transport , RNA, Messenger/metabolism , Vesicular Transport Proteins/genetics , ZebrafishABSTRACT
BACKGROUND: Bicuspid aortic valve (BAV) disease is a congenital defect that affects 0.5% to 1.2% of the population and is associated with comorbidities including ascending aortic dilation and calcific aortic valve stenosis. To date, although a few causal genes have been identified, the genetic basis for the vast majority of BAV cases remains unknown, likely pointing to complex genetic heterogeneity underlying this phenotype. Identifying genetic pathways versus individual gene variants may provide an avenue for uncovering additional BAV causes and consequent comorbidities. METHODS: We performed genome-wide association Discovery and Replication Studies using cohorts of 2131 patients with BAV and 2728 control patients, respectively, which identified primary cilia genes as associated with the BAV phenotype. Genome-wide association study hits were prioritized based on P value and validated through in vivo loss of function and rescue experiments, 3-dimensional immunohistochemistry, histology, and morphometric analyses during aortic valve morphogenesis and in aged animals in multiple species. Consequences of these genetic perturbations on cilia-dependent pathways were analyzed by Western and immunohistochemistry analyses, and assessment of aortic valve and cardiac function were determined by echocardiography. RESULTS: Genome-wide association study hits revealed an association between BAV and genetic variation in human primary cilia. The most associated single-nucleotide polymorphisms were identified in or near genes that are important in regulating ciliogenesis through the exocyst, a shuttling complex that chaperones cilia cargo to the membrane. Genetic dismantling of the exocyst resulted in impaired ciliogenesis, disrupted ciliogenic signaling and a spectrum of cardiac defects in zebrafish, and aortic valve defects including BAV, valvular stenosis, and valvular calcification in murine models. CONCLUSIONS: These data support the exocyst as required for normal ciliogenesis during aortic valve morphogenesis and implicate disruption of ciliogenesis and its downstream pathways as contributory to BAV and associated comorbidities in humans.
Subject(s)
Aortic Valve Stenosis/pathology , Aortic Valve/abnormalities , Cilia/physiology , Heart Defects, Congenital/pathology , Heart Valve Diseases/pathology , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/genetics , Bicuspid Aortic Valve Disease , Case-Control Studies , Cilia/pathology , Gene Frequency , Genome-Wide Association Study , Genotype , Heart Defects, Congenital/genetics , Heart Valve Diseases/genetics , Heart Valve Diseases/metabolism , Humans , Mice , Mice, Knockout , Polymorphism, Single Nucleotide , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolismABSTRACT
Congenital heart defects are the most common birth defects in humans, and those that affect the proper alignment of the outflow tracts and septation of the ventricles are a highly significant cause of morbidity and mortality in infants. A late differentiating population of cardiac progenitors, referred to as the anterior second heart field (AHF), gives rise to the outflow tract and the majority of the right ventricle and provides an embryological context for understanding cardiac outflow tract alignment and membranous ventricular septal defects. However, the transcriptional pathways controlling AHF development and their roles in congenital heart defects remain incompletely elucidated. Here, we inactivated the gene encoding the transcription factor MEF2C in the AHF in mice. Loss of Mef2c function in the AHF results in a spectrum of outflow tract alignment defects ranging from overriding aorta to double-outlet right ventricle and dextro-transposition of the great arteries. We identify Tdgf1, which encodes a Nodal co-receptor (also known as Cripto), as a direct transcriptional target of MEF2C in the outflow tract via an AHF-restricted Tdgf1 enhancer. Importantly, both the MEF2C and TDGF1 genes are associated with congenital heart defects in humans. Thus, these studies establish a direct transcriptional pathway between the core cardiac transcription factor MEF2C and the human congenital heart disease gene TDGF1. Moreover, we found a range of outflow tract alignment defects resulting from a single genetic lesion, supporting the idea that AHF-derived outflow tract alignment defects may constitute an embryological spectrum rather than distinct anomalies.
Subject(s)
Epidermal Growth Factor/physiology , Gene Expression Regulation, Developmental , Membrane Glycoproteins/physiology , Neoplasm Proteins/physiology , Animals , Animals, Newborn , Disease Models, Animal , Epidermal Growth Factor/genetics , Female , Gene Deletion , Heart/embryology , Heart Defects, Congenital/genetics , Heart Septal Defects, Ventricular/genetics , Heart Ventricles , Humans , In Situ Hybridization , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/physiology , Male , Membrane Glycoproteins/genetics , Mice , Morphogenesis/genetics , Neoplasm Proteins/genetics , Organogenesis , Sequence Analysis, RNA , Tissue Distribution , Transcription, Genetic , Transposition of Great Vessels/geneticsABSTRACT
Although periostin plays a significant role in adult cardiac remodeling diseases, the focus of this review is on periostin as a valvulogenic gene. Periostin is expressed throughout valvular development, initially being expressed in endocardial endothelial cells that have been activated to transform into prevalvular mesenchyme termed "cushion tissues" that sustain expression of periostin throughout their morphogenesis into mature (compacted) valve leaflets. The phenotype of periostin null indicates that periostin is not required for endocardial transformation nor the proliferation of its mesenchymal progeny but rather promotes cellular behaviors that promote migration, survival (anti-apoptotic), differentiation into fibroblastic lineages, collagen secretion and postnatal remodeling/maturation. These morphogenetic activities are promoted or coordinated by periostin signaling through integrin receptors activating downstream kinases in cushion cells that activate hyaluronan synthetase II (Akt/PI3K), collagen synthesis (Erk/MapK) and changes in cytoskeletal organization (Pak1) which regulate postnatal remodeling of cells and associated collagenous matrix into a trilaminar (zonal) histoarchitecture. Pak1 binding to filamin A is proposed as one mechanism by which periostin supports remodeling. The failure to properly remodel cushions sets up a trajectory of degenerative (myxomatous-like) changes that over time reduce biomechanical properties and increase chances for prolapse, regurgitation or calcification of the leaflets. Included in the review are considerations of lineage diversity and the role of periostin as a determinant of mesenchymal cell fate.
Subject(s)
Cell Adhesion Molecules/physiology , Heart Valves/growth & development , Organogenesis , Cell Differentiation , Endothelial Cells/cytology , Humans , Integrins , Mesoderm/cytologyABSTRACT
Aims: Filamin-A (FLNA) was identified as the first gene of non-syndromic mitral valve dystrophy (FLNA-MVD). We aimed to assess the phenotype of FLNA-MVD and its impact on prognosis. Methods and results: We investigated the disease in 246 subjects (72 mutated) from four FLNA-MVD families harbouring three different FLNA mutations. Phenotype was characterized by a comprehensive echocardiography focusing on mitral valve apparatus in comparison with control relatives. In this X-linked disease valves lesions were severe in men and moderate in women. Most men had classical features of mitral valve prolapse (MVP), but without chordal rupture. By contrast to regular MVP, mitral leaflet motion was clearly restricted in diastole and papillary muscles position was closer to mitral annulus. Valvular abnormalities were similar in the four families, in adults and young patients from early childhood suggestive of a developmental disease. In addition, mitral valve lesions worsened over time as encountered in degenerative conditions. Polyvalvular involvement was frequent in males and non-diagnostic forms frequent in females. Overall survival was moderately impaired in men (P = 0.011). Cardiac surgery rate (mainly valvular) was increased (33.3 Ā± 9.8 vs. 5.0 Ā± 4.9%, P < 0.0001; hazard ratio 10.5 [95% confidence interval: 2.9-37.9]) owing mainly to a lifetime increased risk in men (76.8 Ā± 14.1 vs. 9.1 Ā± 8.7%, P < 0.0001). Conclusion: FLNA-MVD is a developmental and degenerative disease with complex phenotypic expression which can influence patient management. FLNA-MVD has unique features with both MVP and paradoxical restricted motion in diastole, sub-valvular mitral apparatus impairment and polyvalvular lesions in males. FLNA-MVD conveys a substantial lifetime risk of valve surgery in men.
Subject(s)
Filamins/genetics , Mitral Valve Prolapse/genetics , Mitral Valve Prolapse/pathology , Mitral Valve/pathology , Adolescent , Adult , Echocardiography , Female , Genotype , Humans , Male , Middle Aged , Mitral Valve/diagnostic imaging , Mutation/genetics , Phenotype , Prognosis , Retrospective Studies , Risk Factors , Young AdultABSTRACT
We previously have shown that the highly conserved eight-protein exocyst trafficking complex is required for ciliogenesis in kidney tubule cells. We hypothesized here that ciliogenic programs are conserved across organs and species. To determine whether renal primary ciliogenic programs are conserved in the eye, and to characterize the function and mechanisms by which the exocyst regulates eye development in zebrafish, we focused on exoc5, a central component of the exocyst complex, by analyzing both exoc5 zebrafish mutants, and photoreceptor-specific Exoc5 knock-out mice. Two separate exoc5 mutant zebrafish lines phenocopied exoc5 morphants and, strikingly, exhibited a virtual absence of photoreceptors, along with abnormal retinal development and cell death. Because the zebrafish mutant was a global knockout, we also observed defects in several ciliated organs, including the brain (hydrocephalus), heart (cardiac edema), and kidney (disordered and shorter cilia). exoc5 knockout increased phosphorylation of the regulatory protein Mob1, consistent with Hippo pathway activation. exoc5 mutant zebrafish rescue with human EXOC5 mRNA completely reversed the mutant phenotype. We accomplished photoreceptor-specific knockout of Exoc5 with our Exoc5 fl/fl mouse line crossed with a rhodopsin-Cre driver line. In Exoc5 photoreceptor-specific knock-out mice, the photoreceptor outer segment structure was severely impaired at 4 weeks of age, although a full-field electroretinogram indicated a visual response was still present. However, by 6 weeks, visual responses were eliminated. In summary, we show that ciliogenesis programs are conserved in the kidneys and eyes of zebrafish and mice and that the exocyst is necessary for photoreceptor ciliogenesis and retinal development, most likely by trafficking cilia and outer-segment proteins.
Subject(s)
Cilia/metabolism , Exocytosis , Photoreceptor Cells, Vertebrate/metabolism , Retina/metabolism , Animals , Mice , Mice, Inbred C57BL , Mutation , Photoreceptor Cells, Vertebrate/pathology , Retina/pathology , Vesicular Transport Proteins/deficiency , Vesicular Transport Proteins/metabolism , ZebrafishABSTRACT
BACKGROUND: Bicuspid aortic valve (BAV) disease is the most common congenital heart defect, affecting 0.5-1.2% of the population and causing significant morbidity and mortality. Only a few genes have been identified in pedigrees, and no single gene model explains BAV inheritance, thus supporting a complex genetic network of interacting genes. However, patients with rare syndromic diseases that stem from alterations in the structure and function of primary cilia ("ciliopathies") exhibit BAV as a frequent cardiovascular finding, suggesting primary cilia may factor broadly in disease etiology. RESULTS: Our data are the first to demonstrate that primary cilia are expressed on aortic valve mesenchymal cells during embryonic development and are lost as these cells differentiate into collagen-secreting fibroblastic-like cells. The function of primary cilia was tested by genetically ablating the critical ciliogenic gene Ift88. Loss of Ift88 resulted in abrogation of primary cilia and increased fibrogenic extracellular matrix (ECM) production. Consequentially, stratification of ECM boundaries normally present in the aortic valve were lost and a highly penetrant BAV phenotype was evident at birth. CONCLUSIONS: Our data support cilia as a novel cellular mechanism for restraining ECM production during aortic valve development and broadly implicate these structures in the etiology of BAV disease in humans. Developmental Dynamics 246:625-634, 2017. Ā© 2017 Wiley Periodicals, Inc.
Subject(s)
Aortic Valve/abnormalities , Aortic Valve/metabolism , Cilia/metabolism , Cilia/physiology , Heart Valve Diseases/metabolism , Animals , Aortic Valve/growth & development , Bicuspid Aortic Valve Disease , Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Extracellular Matrix/metabolism , Female , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Immunohistochemistry , Male , Mice , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolismABSTRACT
The discovery of small non-coding microRNAs has revealed novel mechanisms of post-translational regulation of gene expression, the implications of which are still incompletely understood. We focused on microRNA 21 (miR-21), which is expressed in cardiac valve endothelium during development, in order to better understand its mechanistic role in cardiac valve development. Using a combination of in vivo gene knockdown in zebrafish and in vitro assays in human cells, we show that miR-21 is necessary for proper development of the atrioventricular valve (AV). We identify pdcd4b as a relevant in vivo target of miR-21 and show that protection of pdcd4b from miR-21 binding results in failure of AV development. In vitro experiments using human pulmonic valve endothelial cells demonstrate that miR-21 overexpression augments endothelial cell migration. PDCD4 knockdown alone was sufficient to enhance endothelial cell migration. These results demonstrate that miR-21 plays a necessary role in cardiac valvulogenesis, in large part due to an obligatory downregulation of PDCD4.
Subject(s)
Apoptosis Regulatory Proteins/metabolism , Gene Expression Regulation, Developmental , Heart Valves/embryology , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Movement , Crosses, Genetic , Endothelial Cells/cytology , Humans , Mice , Time Factors , ZebrafishABSTRACT
Recent studies using mouse models for cell fate tracing of epicardial derived cells (EPDCs) have demonstrated that at the atrioventricular (AV) junction EPDCs contribute to the mesenchyme of the AV sulcus, the annulus fibrosus, and the parietal leaflets of the AV valves. There is little insight, however, into the mechanisms that govern the contribution of EPDCs to these tissues. While it has been demonstrated that bone morphogenetic protein (Bmp) signaling is required for AV cushion formation, its role in regulating EPDC contribution to the AV junction remains unexplored. To determine the role of Bmp signaling in the contribution of EPDCs to the AV junction, the Bmp receptor activin-like kinase 3 (Alk3; or Bmpr1a) was conditionally deleted in the epicardium and EPDCs using the mWt1/IRES/GFP-Cre (Wt1(Cre)) mouse. Embryonic Wt1(Cre);Alk3(fl/fl) specimens showed a significantly smaller AV sulcus and a severely underdeveloped annulus fibrosus. Electrophysiological analysis of adult Wt1(Cre);Alk3(fl/fl) mice showed, unexpectedly, no ventricular pre-excitation. Cell fate tracing revealed a significant decrease in the number of EPDCs within the parietal leaflets of the AV valves. Postnatal Wt1(Cre);Alk3(fl/fl) specimens showed myxomatous changes in the leaflets of the mitral valve. Together these observations indicate that Alk3 mediated Bmp signaling is important in the cascade of events that regulate the contribution of EPDCs to the AV sulcus, annulus fibrosus, and the parietal leaflets of the AV valves. Furthermore, this study shows that EPDCs do not only play a critical role in early developmental events at the AV junction, but that they also are important in the normal maturation of the AV valves.
Subject(s)
Bone Morphogenetic Protein Receptors, Type I/physiology , Bone Morphogenetic Proteins/metabolism , Heart Atria/embryology , Heart Ventricles/embryology , Pericardium/embryology , Animals , Apoptosis , Cell Lineage , Cell Movement , Cell Proliferation , Crosses, Genetic , Electrocardiography , Electrophysiology , Female , Gene Expression Regulation, Developmental , Imaging, Three-Dimensional , Male , Mice , Mitral Valve/embryology , Pericardium/cytology , Phenotype , Signal TransductionABSTRACT
Periostin (PN), a novel fasciclin-related matricellular protein, has been implicated in cardiac development and postnatal remodeling, but the mechanism remains unknown. We examined the role of PN in mediating intracellular kinase activation for atrioventricular valve morphogenesis using well defined explant cultures, gene transfection systems, and Western blotting. The results show that valve progenitor (cushion) cells secrete PN into the extracellular matrix, where it can bind to INTEGRINs and activate INTEGRIN/focal adhesion kinase signaling pathways and downstream kinases, PI3K/AKT and ERK. Functional assays with prevalvular progenitor cells showed that activating these signaling pathways promoted adhesion, migration, and anti-apoptosis. Through activation of PI3K/ERK, PN directly enhanced collagen expression. Comparing PN-null to WT mice also revealed that expression of hyaluronan (HA) and activation of hyaluronan synthase-2 (Has2) are also enhanced upon PN/INTEGRIN/focal adhesion kinase-mediated activation of PI3K and/or ERK, an effect confirmed by the reduction of HA synthase-2 in PN-null mice. We also identified in valve progenitor cells a potential autocrine signaling feedback loop between PN and HA through PI3K and/or ERK. Finally, in a three-dimensional assay to simulate normal valve maturation in vitro, PN promoted collagen compaction in a kinase-dependent fashion. In summary, this study provides the first direct evidence that PN can act to stimulate a valvulogenic signaling pathway.
Subject(s)
Cell Adhesion Molecules/metabolism , Heart Valves/embryology , Hyaluronic Acid/metabolism , Signal Transduction , Animals , Cell Adhesion , Cell Adhesion Molecules/genetics , Cell Movement , Cell Proliferation , Cells, Cultured , Chick Embryo , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gene Deletion , Heart Valves/cytology , Heart Valves/metabolism , Integrins/metabolism , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , SheepABSTRACT
The Ehlers-Danlos Syndromes (EDS) represent a group of hereditary connective tissue disorders, with the hypermobile subtype (hEDS) being the most prevalent. hEDS manifests with a diverse array of clinical symptoms and associated comorbidities spanning the musculoskeletal, neurological, gastrointestinal, cardiovascular, and immunological systems. hEDS patients may experience spinal neurological complications, including cervico-medullary symptoms arising from cranio-cervical and/or cervical instability/hypermobility, as well as tethered cord syndrome (TCS). TCS is often radiographically occult in nature, not always detectable on standard imaging and presents with lower back pain, balance issues, weakness in the lower extremities, sensory loss, and bowel or bladder dysfunction. Cervical instability due to ligament laxity can lead to headaches, vertigo, tinnitus, vision changes, syncope, radiculopathy, pain, and dysphagia. TCS and cervical instability not only share clinical features but can also co-occur in hEDS patients, posing challenges in diagnostics and clinical management. We present a review of the literature and a case study of a 20-year-old female with hEDS, who underwent surgical interventions for these conditions, highlighting the challenges in diagnosing and managing these complexities and underscoring the importance of tailored treatment strategies to improve patient outcomes.
ABSTRACT
Collagen, the most abundant protein in the body, is a key component of the extracellular matrix (ECM), which plays a crucial role in the structure and support of connective tissues. Abnormalities in collagen associated with connective tissue disorders (CTD) can lead to neuroinflammation and weaken the integrity of the blood-brain barrier (BBB), a semi-permeable membrane that separates the brain's extracellular fluid from the bloodstream. This compromise in the BBB can result from disruptions in ECM components, leading to neuroinflammatory responses, neuronal damage, and increased risks of neurological disorders. These changes impact central nervous system homeostasis and may exacerbate neurological conditions linked to CTD, manifesting as cognitive impairment, sensory disturbances, headaches, sleep issues, and psychiatric symptoms. The Ehlers-Danlos syndromes (EDS) are a group of heritable CTDs that result from varying defects in collagen and the ECM. The most prevalent subtype, hypermobile EDS (hEDS), involves clinical manifestations that include joint hypermobility, skin hyperextensibility, autonomic dysfunction, mast cell activation, chronic pain, as well as neurological manifestations like chronic headaches and cerebrospinal fluid (CSF) leaks. Understanding the connections between collagen, CSF, inflammation, and the BBB could provide insights into neurological diseases associated with connective tissue abnormalities and guide future research.