ABSTRACT
QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.
Subject(s)
Adjuvants, Immunologic , Metabolic Engineering , Saccharomyces cerevisiae , Saponins , Adjuvants, Immunologic/biosynthesis , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/metabolism , Biosynthetic Pathways/genetics , Drug Design , Enzymes/genetics , Enzymes/metabolism , Metabolic Engineering/methods , Plants/enzymology , Plants/genetics , Plants/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saponins/biosynthesis , Saponins/chemistry , Saponins/genetics , Saponins/metabolism , Structure-Activity RelationshipABSTRACT
Biosynthesis is an environmentally benign and renewable approach that can be used to produce a broad range of natural and, in some cases, new-to-nature products. However, biology lacks many of the reactions that are available to synthetic chemists, resulting in a narrower scope of accessible products when using biosynthesis rather than synthetic chemistry. A prime example of such chemistry is carbene-transfer reactions1. Although it was recently shown that carbene-transfer reactions can be performed in a cell and used for biosynthesis2,3, carbene donors and unnatural cofactors needed to be added exogenously and transported into cells to effect the desired reactions, precluding cost-effective scale-up of the biosynthesis process with these reactions. Here we report the access to a diazo ester carbene precursor by cellular metabolism and a microbial platform for introducing unnatural carbene-transfer reactions into biosynthesis. The α-diazoester azaserine was produced by expressing a biosynthetic gene cluster in Streptomyces albus. The intracellularly produced azaserine was used as a carbene donor to cyclopropanate another intracellularly produced molecule-styrene. The reaction was catalysed by engineered P450 mutants containing a native cofactor with excellent diastereoselectivity and a moderate yield. Our study establishes a scalable, microbial platform for conducting intracellular abiological carbene-transfer reactions to functionalize a range of natural and new-to-nature products and expands the scope of organic products that can be produced by cellular metabolism.
Subject(s)
Azaserine , Azaserine/biosynthesis , Azaserine/chemistry , Biological Products/chemistry , Biological Products/metabolism , Multigene Family/genetics , Styrene/chemistry , Cyclopropanes/chemistry , Coenzymes/chemistry , Coenzymes/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolismABSTRACT
Plants release a wealth of metabolites into the rhizosphere that can shape the composition and activity of microbial communities in response to environmental stress. The connection between rhizodeposition and rhizosphere microbiome succession has been suggested, particularly under environmental stress conditions, yet definitive evidence is scarce. In this study, we investigated the relationship between rhizosphere chemistry, microbiome dynamics, and abiotic stress in the bioenergy crop switchgrass grown in a marginal soil under nutrient-limited, moisture-limited, and nitrogen (N)-replete, phosphorus (P)-replete, and NP-replete conditions. We combined 16S rRNA amplicon sequencing and LC-MS/MS-based metabolomics to link rhizosphere microbial communities and metabolites. We identified significant changes in rhizosphere metabolite profiles in response to abiotic stress and linked them to changes in microbial communities using network analysis. N-limitation amplified the abundance of aromatic acids, pentoses, and their derivatives in the rhizosphere, and their enhanced availability was linked to the abundance of bacterial lineages from Acidobacteria, Verrucomicrobia, Planctomycetes, and Alphaproteobacteria. Conversely, N-amended conditions increased the availability of N-rich rhizosphere compounds, which coincided with proliferation of Actinobacteria. Treatments with contrasting N availability differed greatly in the abundance of potential keystone metabolites; serotonin and ectoine were particularly abundant in N-replete soils, while chlorogenic, cinnamic, and glucuronic acids were enriched in N-limited soils. Serotonin, the keystone metabolite we identified with the largest number of links to microbial taxa, significantly affected root architecture and growth of rhizosphere microorganisms, highlighting its potential to shape microbial community and mediate rhizosphere plant-microbe interactions.
Subject(s)
Metabolome , Microbiota , Rhizosphere , Soil Microbiology , Microbiota/physiology , Nitrogen/metabolism , RNA, Ribosomal, 16S/genetics , Nutrients/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Soil/chemistry , Phosphorus/metabolism , Plant Roots/microbiology , Plant Roots/metabolism , Panicum/metabolism , Panicum/microbiologyABSTRACT
Soil organic matter (SOM) is comprised of a diverse array of reactive carbon molecules, including hydrophilic and hydrophobic compounds, that impact rates of SOM formation and persistence. Despite clear importance to ecosystem science, little is known about broad-scale controls on SOM diversity and variability in soil. Here, we show that microbial decomposition drives significant variability in the molecular richness and diversity of SOM between soil horizons and across a continental-scale gradient in climate and ecosystem type (arid shrubs, coniferous, deciduous, and mixed forests, grasslands, and tundra sedges). The molecular dissimilarity of SOM was strongly influenced by ecosystem type (hydrophilic compounds: 17%, P < 0.001; hydrophobic compounds: 10% P < 0.001) and soil horizon (hydrophilic compounds: 17%, P < 0.001; hydrophobic compounds: 21%, P < 0.001), as assessed using metabolomic analysis of hydrophilic and hydrophobic metabolites. While the proportion of shared molecular features was significantly higher in the litter layer than subsoil C horizons across ecosystems (12 times and 4 times higher for hydrophilic and hydrophobic compounds, respectively), the proportion of site-specific molecular features nearly doubled from the litter layer to the subsoil horizon, suggesting greater differentiation of compounds after microbial decomposition within each ecosystem. Together, these results suggest that microbial decomposition of plant litter leads to a decrease in SOM α-molecular diversity, yet an increase in ß-molecular diversity across ecosystems. The degree of microbial degradation, determined by the position in the soil profile, exerts a greater control on SOM molecular diversity than environmental factors, such as soil texture, moisture, and ecosystem type.
Subject(s)
Ecosystem , Forests , Tundra , Carbon , SoilABSTRACT
Many insects have evolved the ability to manipulate plant growth to generate extraordinary structures called galls, in which insect larva can develop while being sheltered and feeding on the plant. In particular, cynipid (Hymenoptera: Cynipidae) wasps have evolved to form morphologically complex galls and generate an astonishing array of gall shapes, colors, and sizes. However, the biochemical basis underlying these remarkable cellular and developmental transformations remains poorly understood. A key determinant in plant cellular development is cell wall deposition that dictates the physical form and physiological function of newly developing cells, tissues, and organs. However, it is unclear to what degree cell walls are restructured to initiate and support the formation of new gall tissue. Here, we characterize the molecular alterations underlying gall development using a combination of metabolomic, histological, and biochemical techniques to elucidate how valley oak (Quercus lobata) leaf cells are reprogrammed to form galls. Strikingly, gall development involves an exceptionally coordinated spatial deposition of lignin and xylan to form de novo gall vasculature. Our results highlight how cynipid wasps can radically change the metabolite profile and restructure the cell wall to enable the formation of galls, providing insights into the mechanism of gall induction and the extent to which plants can be entirely reprogrammed to form unique structures and organs.
Subject(s)
Cell Wall , Host-Parasite Interactions , Plant Tumors , Wasps , Animals , Cell Wall/metabolism , Wasps/physiology , Plant Tumors/parasitology , Quercus/metabolism , Quercus/parasitology , Plant Leaves/metabolism , Plant Leaves/parasitology , Lignin/metabolismABSTRACT
Aminotransferases (ATs) catalyze pyridoxal 5'-phosphate-dependent transamination reactions between amino donor and keto acceptor substrates and play central roles in nitrogen metabolism of all organisms. ATs are involved in the biosynthesis and degradation of both proteinogenic and nonproteinogenic amino acids and also carry out a wide variety of functions in photorespiration, detoxification, and secondary metabolism. Despite the importance of ATs, their functionality is poorly understood as only a small fraction of putative ATs, predicted from DNA sequences, are associated with experimental data. Even for characterized ATs, the full spectrum of substrate specificity, among many potential substrates, has not been explored in most cases. This is largely due to the lack of suitable high-throughput assays that can screen for AT activity and specificity at scale. Here we present a new high-throughput platform for screening AT activity using bioconjugate chemistry and mass spectrometry imaging-based analysis. Detection of AT reaction products is achieved by forming an oxime linkage between the ketone groups of transaminated amino donors and a probe molecule that facilitates mass spectrometry-based analysis using nanostructure-initiator mass spectrometry or MALDI-mass spectrometry. As a proof-of-principle, we applied the newly established method and found that a previously uncharacterized Arabidopsis thaliana tryptophan AT-related protein 1 is a highly promiscuous enzyme that can utilize 13 amino acid donors and three keto acid acceptors. These results demonstrate that this oxime-mass spectrometry imaging AT assay enables high-throughput discovery and comprehensive characterization of AT enzymes, leading to an accurate understanding of the nitrogen metabolic network.
Subject(s)
Amino Acids , Enzyme Assays , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Transaminases , Amino Acids/metabolism , Substrate Specificity , Transaminases/chemistry , Transaminases/metabolism , Enzyme Assays/methods , Arabidopsis/enzymologyABSTRACT
Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis. Understanding how plants respond to such genetic modifications at the transcriptional and metabolic levels is needed to facilitate further improvement and field deployment. In this work, we acquired fundamental knowledge on lignin-modified poplar expressing 3-dehydroshikimate dehydratase using RNA-seq and metabolomics. The data clearly demonstrate that changes in gene expression and metabolite abundance can occur in a strict spatiotemporal fashion, revealing tissue-specific responses in the xylem, phloem, or periderm. In the poplar line that exhibited the strongest reduction in lignin, we found that 3% of the transcripts had altered expression levels and ~19% of the detected metabolites had differential abundance in the xylem from older stems. The changes affected predominantly the shikimate and phenylpropanoid pathways as well as secondary cell wall metabolism, and resulted in significant accumulation of hydroxybenzoates derived from protocatechuate and salicylate.
Subject(s)
Hydro-Lyases , Lignin , Populus , Populus/genetics , Populus/metabolism , Populus/enzymology , Lignin/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Gene Expression Regulation, Plant , Plants, Genetically Modified/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Xylem/metabolism , Xylem/geneticsABSTRACT
Anaerobic fungi (class Neocallimastigomycetes) thrive as low-abundance members of the herbivore digestive tract. The genomes of anaerobic gut fungi are poorly characterized and have not been extensively mined for the biosynthetic enzymes of natural products such as antibiotics. Here, we investigate the potential of anaerobic gut fungi to synthesize natural products that could regulate membership within the gut microbiome. Complementary 'omics' approaches were combined to catalog the natural products of anaerobic gut fungi from four different representative species: Anaeromyces robustus (Arobustus), Caecomyces churrovis (Cchurrovis), Neocallimastix californiae (Ncaliforniae), and Piromyces finnis (Pfinnis). In total, 146 genes were identified that encode biosynthetic enzymes for diverse types of natural products, including nonribosomal peptide synthetases and polyketide synthases. In addition, N. californiae and C. churrovis genomes encoded seven putative bacteriocins, a class of antimicrobial peptides typically produced by bacteria. During standard laboratory growth on plant biomass or soluble substrates, 26% of total core biosynthetic genes in all four strains were transcribed. Across all four fungal strains, 30% of total biosynthetic gene products were detected via proteomics when grown on cellobiose. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of fungal supernatants detected 72 likely natural products from A. robustus alone. A compound produced by all four strains of anaerobic fungi was putatively identified as the polyketide-related styrylpyrone baumin. Molecular networking quantified similarities between tandem mass spectrometry (MS/MS) spectra among these fungi, enabling three groups of natural products to be identified that are unique to anaerobic fungi. Overall, these results support the finding that anaerobic gut fungi synthesize natural products, which could be harnessed as a source of antimicrobials, therapeutics, and other bioactive compounds.
Subject(s)
Biological Products/isolation & purification , Fungal Proteins/isolation & purification , Fungi/chemistry , Proteomics , Anaerobiosis/genetics , Biological Products/chemistry , Biomass , Chromatography, Liquid , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gastrointestinal Microbiome/genetics , Lignin/chemistry , Lignin/genetics , Neocallimastigales/chemistry , Neocallimastigales/genetics , Neocallimastix/chemistry , Neocallimastix/genetics , Piromyces/chemistry , Piromyces/genetics , Tandem Mass SpectrometryABSTRACT
Modular polyketide synthases (PKSs) are polymerases that employ α-carboxyacyl-CoAs as extender substrates. This enzyme family contains several catalytic modules, where each module is responsible for a single round of polyketide chain extension. Although PKS modules typically use malonyl-CoA or methylmalonyl-CoA for chain elongation, many other malonyl-CoA analogues are used to diversify polyketide structures in nature. Previously, we developed a method to alter an extension substrate of a given module by exchanging an acyltransferase (AT) domain while maintaining protein folding. Here, we report in vitro polyketide biosynthesis by 13 PKSs (the wild-type PKS and 12 AT-exchanged PKSs with unusual ATs) and 14 extender substrates. Our â¼200 in vitro reactions resulted in 13 structurally different polyketides, including several polyketides that have not been reported. In some cases, AT-exchanged PKSs produced target polyketides by >100-fold compared to the wild-type PKS. These data also indicate that most unusual AT domains do not incorporate malonyl-CoA and methylmalonyl-CoA but incorporate various rare extender substrates that are equal to in size or slightly larger than natural substrates. We developed a computational workflow to predict the approximate AT substrate range based on active site volumes to support the selection of ATs. These results greatly enhance our understanding of rare AT domains and demonstrate the benefit of using the proposed PKS engineering strategy to produce novel chemicals in vitro.
Subject(s)
Polyketide Synthases , Polyketides , Polyketide Synthases/metabolism , Acyltransferases/chemistry , Catalytic Domain , Polyketides/metabolism , Substrate SpecificityABSTRACT
Kelp is an abundant, farmable biomass-containing laminarin and alginate as major polysaccharides, providing an excellent model substrate to study their deconstruction by simple enzyme mixtures. Our previous study showed strong reactivity of the glycoside hydrolase family 55 during hydrolysis of purified laminarin, raising the question of its reactivity with intact kelp. In this study, we determined that a combination of a single glycoside hydrolase family 55 ß-1,3-exoglucanase with a broad-specificity alginate lyase from the polysaccharide lyase family 18 gives efficient hydrolysis of untreated kelp to a mixture of simple sugars, that is, glucose, gentiobiose, mannitol-end glucose, and mannuronic and guluronic acids and their soluble oligomers. Quantitative assignments from nanostructure initiator mass spectrometry (NIMS) and 2D HSQC NMR spectroscopy and analysis of the reaction time-course are provided. The data suggest that binary combinations of enzymes targeted to the unique polysaccharide composition of marine biomass are sufficient to deconstruct kelp into soluble sugars for microbial fermentation.
Subject(s)
Cellulases , Kelp , Kelp/metabolism , Hydrolysis , Polysaccharide-Lyases/metabolism , Polysaccharides , Glucose , Glycoside Hydrolases/metabolism , Substrate SpecificityABSTRACT
Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering. Here, to address this gap, we create a set of engineered Escherichia coli and Saccharomyces cerevisiae strains rewired via CRISPR-dCas9 to achieve high-flux toward key metabolic precursors; namely, acetyl-CoA, shikimate, triose-phosphate, oxaloacetate, α-ketoglutarate, and glucose-6-phosphate. Cell-free extracts generated from these strains are used for targeted enzyme screening in vitro. As model systems, we assess in vivo and in vitro production of triacetic acid lactone from acetyl-CoA and muconic acid from the shikimate pathway. The need for these platforms is exemplified by the fact that muconic acid cannot be detected in wildtype extracts provided with the same biosynthetic enzymes. We also perform metabolomic comparison to understand biochemical differences between the cellular and cell-free muconic acid synthesis systems (E. coli and S. cerevisiae cells and cell extracts with and without metabolic rewiring). While any given pathway has different interfaces with metabolism, we anticipate that this set of pre-optimized, flux enhanced cell extracts will enable prototyping efforts for new biosynthetic pathways and the discovery of biochemical functions of enzymes.
Subject(s)
Metabolic Engineering , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Acetyl Coenzyme A/metabolism , Cell Extracts , Escherichia coli/metabolismABSTRACT
Biocrusts are phototroph-driven communities inhabiting arid soil surfaces. Like plants, most photoautotrophs (largely cyanobacteria) in biocrusts are thought to exchange fixed carbon for essential nutrients like nitrogen with cyanosphere bacteria. Here, we aim to compare beneficial interactions in rhizosphere and cyanosphere environments, including finding growth-promoting strains for hosts from both environments. To examine this, we performed a retrospective analysis of 16S rRNA gene sequencing datasets, host-microbe co-culture experiments between biocrust communities/biocrust isolates and a model grass (Brachypodium distachyon) or a dominant biocrust cyanobacterium (Microcoleus vaginatus), and metabolomic analysis. All 18 microbial phyla in the cyanosphere were also present in the rhizosphere, with additional 17 phyla uniquely found in the rhizosphere. The biocrust microbes promoted the growth of the model grass, and three biocrust isolates (Bosea sp._L1B56, Pseudarthrobacter sp._L1D14 and Pseudarthrobacter picheli_L1D33) significantly promoted the growth of both hosts. Moreover, pantothenic acid was produced by Pseudarthrobacter sp._L1D14 when grown on B. distachyon exudates, and supplementation of plant growth medium with this metabolite increased B. distachyon biomass by over 60%. These findings suggest that cyanobacteria and other diverse photoautotrophic hosts can be a source for new plant growth-promoting microbes and metabolites.
Subject(s)
Plants , Rhizosphere , RNA, Ribosomal, 16S/genetics , Retrospective Studies , Biomass , Soil , Soil MicrobiologyABSTRACT
Roles of different ecological classes of algal exometabolites in regulating microbial community composition are not well understood. Here, we identify exometabolites from the model diatom Phaeodactylum tricornutum and demonstrate their potential to influence bacterial abundances. We profiled exometabolites across a time course of axenic algal growth using liquid chromatography-tandem mass spectrometry. We then investigated growth of 12 bacterial isolates on individual-identified exometabolites. Lastly, we compared responses of a P. tricornutum-adapted enrichment community to additions of two contrasting metabolites: selective growth substrate 4-hydroxybenzoic acid and putative signaling/facilitator molecule lumichrome. We identified 50 P. tricornutum metabolites and found distinct temporal accumulation patterns. Two exometabolites (of 12 tested) supported growth of distinct subsets of bacterial isolates. While algal exudates and algal presence drove similar changes in community composition compared with controls, exogenous 4-hydroxybenzoic acid addition promoted increased abundances of taxa that utilized it in isolation, and also revealed the importance of factors relating to algal presence in regulating community composition. This work demonstrates that secretion of selective bacterial growth substrates represents one mechanism by which algal exometabolites can influence bacterial community composition and illustrates how the algal exometabolome has the potential to modulate bacterial communities as a function of algal growth.
Subject(s)
Diatoms , Diatoms/metabolism , Chromatography, Liquid , Mass Spectrometry , Bacteria/metabolismABSTRACT
We described a mass spectrometry-based assay to rapidly quantify the production of primary alcohols directly from cell cultures. This novel assay used the combination of TEMPO-based oxidation chemistry and oxime ligation, followed by product analysis based on Nanostructure-Initiator Mass Spectrometry. This assay enables quantitative monitor both C5 to C18 alcohols as well as glucose and gluconate in the growth medium to support strain characterization and optimization. We find that this assay yields similar results to gas chromatography for isoprenol production but required much less acquisition time per sample. We applied this assay to gain new insights into P. Putida's utilization of alcohols and find that this strain largely could not grow on heptanol and octanol.
Subject(s)
Nanostructures , Gas Chromatography-Mass Spectrometry , Mass Spectrometry/methods , Nanostructures/chemistry , Glucose , EthanolABSTRACT
Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks (https://github.com/biocore/mmvec) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe-metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease.
Subject(s)
Bacteria/metabolism , Microbiota , Animals , Benchmarking , Cyanobacteria/metabolism , Cystic Fibrosis/microbiology , Inflammatory Bowel Diseases/microbiology , Mice , Neural Networks, Computer , Pseudomonas aeruginosa/metabolismABSTRACT
Phenazines (Phzs), a family of chemicals with a phenazine backbone, are secondary metabolites with diverse properties such as antibacterial, anti-fungal, or anticancer activity. The core derivatives of phenazine, phenazine-1-carboxylic acid (PCA) and phenazine-1,6-dicarboxylic acid (PDC), are themselves precursors for various other derivatives. Recent advances in genome mining tools have enabled researchers to identify many biosynthetic gene clusters (BGCs) that might produce novel Phzs. To characterize the function of these BGCs efficiently, we performed modular construct assembly and subsequent multi-chassis heterologous expression using chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE allowed rapid integration of a PCA BGC into 23 diverse γ-proteobacteria species and allowed us to identify top PCA producers. We then used the top five chassis hosts to express four partially refactored PDC BGCs. A few of these platforms produced high levels of PDC. Specifically, Xenorhabdus doucetiae and Pseudomonas simiae produced PDC at a titer of 293 mg/L and 373 mg/L, respectively, in minimal media. These titers are significantly higher than those previously reported. Furthermore, selectivity toward PDC production over PCA production was improved by up to 9-fold. The results show that these strains are promising chassis for production of PCA, PDC, and their derivatives, as well as for function characterization of Phz BGCs identified via bioinformatics mining.
Subject(s)
Phenazines , Recombinases , Multigene Family , Phenazines/metabolism , Recombinases/geneticsABSTRACT
Tracking the metabolic activity of whole soil communities can improve our understanding of the transformation and fate of carbon in soils. We used stable isotope metabolomics to trace 13C from nine labeled carbon sources into the water-soluble metabolite pool of an agricultural soil over time. Soil was amended with a mixture of all nine sources, with one source isotopically labeled in each treatment. We compared changes in the 13C enrichment of metabolites with respect to carbon source and time over a 48-day incubation and contrasted differences between soluble sources (glucose, xylose, amino acids, etc.) and insoluble sources (cellulose and palmitic acid). Whole soil metabolite profiles varied singularly by time, while the composition of 13C-labeled metabolites differed primarily by carbon source (R2 = 0.68) rather than time (R2 = 0.07), with source-specific differences persisting throughout incubations. The 13C labeling of metabolites from insoluble carbon sources occurred slower than that from soluble sources but yielded a higher average atom percent (atom%) 13C in metabolite markers of biomass (amino acids and nucleic acids). The 13C enrichment of metabolite markers of biomass stabilized between 5 and 15 atom% 13C by the end of incubations. Temporal patterns in the 13C enrichment of tricarboxylic acid cycle intermediates, nucleobases (uracil and thymine), and by-products of DNA salvage (allantoin) closely tracked microbial activity. Our results demonstrate that metabolite production in soils is driven by the carbon source supplied to the community and that the fate of carbon in metabolites do not generally converge over time as a result of ongoing microbial processing and recycling. IMPORTANCE Carbon metabolism in soil remains poorly described due to the inherent difficulty of obtaining information on the microbial metabolites produced by complex soil communities. Our study demonstrates the use of stable isotope probing (SIP) to study carbon metabolism in soil by tracking 13C from supplied carbon sources into metabolite pools and biomass. We show that differences in the metabolism of sources influence the fate of carbon in soils. Heterogeneity in 13C-labeled metabolite profiles corresponded with compositional differences in the metabolically active populations, providing a basis for how microbial community composition correlates with the quality of soil carbon. Our study demonstrates the application of SIP-metabolomics in studying soils and identifies several metabolite markers of growth, activity, and other aspects of microbial function.
Subject(s)
Carbon , Soil , Carbon/metabolism , Soil Microbiology , Isotopes , Amino AcidsABSTRACT
Light and nutrients are critical regulators of photosynthesis and metabolism in plants and algae. Many algae have the metabolic flexibility to grow photoautotrophically, heterotrophically, or mixotrophically. Here, we describe reversible Glc-dependent repression/activation of oxygenic photosynthesis in the unicellular green alga Chromochloris zofingiensis. We observed rapid and reversible changes in photosynthesis, in the photosynthetic apparatus, in thylakoid ultrastructure, and in energy stores including lipids and starch. Following Glc addition in the light, C. zofingiensis shuts off photosynthesis within days and accumulates large amounts of commercially relevant bioproducts, including triacylglycerols and the high-value nutraceutical ketocarotenoid astaxanthin, while increasing culture biomass. RNA sequencing reveals reversible changes in the transcriptome that form the basis of this metabolic regulation. Functional enrichment analyses show that Glc represses photosynthetic pathways while ketocarotenoid biosynthesis and heterotrophic carbon metabolism are upregulated. Because sugars play fundamental regulatory roles in gene expression, physiology, metabolism, and growth in both plants and animals, we have developed a simple algal model system to investigate conserved eukaryotic sugar responses as well as mechanisms of thylakoid breakdown and biogenesis in chloroplasts. Understanding regulation of photosynthesis and metabolism in algae could enable bioengineering to reroute metabolism toward beneficial bioproducts for energy, food, pharmaceuticals, and human health.
Subject(s)
Chlorophyceae/physiology , Gene Expression Regulation, Plant/drug effects , Glucose/pharmacology , Oxygen/metabolism , Photosynthesis/drug effects , Transcriptome/drug effects , Antioxidants/metabolism , Bioengineering , Carbon/metabolism , Chlorophyceae/genetics , Chlorophyceae/radiation effects , Chlorophyceae/ultrastructure , Gene Expression Regulation, Plant/radiation effects , Photosynthesis/radiation effects , Thylakoids/metabolism , Thylakoids/ultrastructure , Transcriptome/radiation effects , Xanthophylls/metabolismABSTRACT
Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with ß-(1,4)-linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble ß-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset.
Subject(s)
Biomass , Glycoside Hydrolases/metabolism , Ascomycota/enzymology , Binding Sites , Catalytic Domain , Databases, Protein , Glucans/chemistry , Glucans/metabolism , Hydrolysis , Kinetics , Mannans/metabolism , Molecular Dynamics Simulation , Ruminococcus/enzymology , Substrate Specificity , Xylans/chemistry , Xylans/metabolismABSTRACT
Sphaerulina musiva is an economically and ecologically important fungal pathogen that causes Septoria stem canker and leaf spot disease of Populus species. To bridge the gap between genetic markers and structural barriers previously found to be linked to Septoria canker disease resistance in poplar, we used hydrophilic interaction liquid chromatography and tandem mass spectrometry to identify and quantify metabolites involved with signaling and cell wall remodeling. Fluctuations in signaling molecules, organic acids, amino acids, sterols, phenolics, and saccharides in resistant and susceptible P. trichocarpa inoculated with S. musiva were observed. The patterns of 222 metabolites in the resistant host implicate systemic acquired resistance (SAR), cell wall apposition, and lignin deposition as modes of resistance to this hemibiotrophic pathogen. This pattern is consistent with the expected response to the biotrophic phase of S. musiva colonization during the first 24 h postinoculation. The fungal pathogen metabolized key regulatory signals of SAR, other phenolics, and precursors of lignin biosynthesis that were depleted in the susceptible host. This is the first study to characterize metabolites associated with the response to initial colonization by S. musiva between resistant and susceptible hosts.