Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Planta ; 255(2): 51, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35084593

ABSTRACT

MAIN CONCLUSION: Australian native species of sorghum contain negligible amounts of dhurrin in their leaves and the cyanogenesis process is regulated differently under water-stress in comparison to domesticated sorghum species. Cyanogenesis in forage sorghum is a major concern in agriculture as the leaves of domesticated sorghum are potentially toxic to livestock, especially at times of drought which induces increased production of the cyanogenic glucoside dhurrin. The wild sorghum species endemic to Australia have a negligible content of dhurrin in the above ground tissues and thus represent a potential resource for key agricultural traits like low toxicity. In this study we investigated the differential expression of cyanogenesis related genes in the leaf tissue of the domesticated species Sorghum bicolor and the Australian native wild species Sorghum macrospermum grown in glasshouse-controlled water-stress conditions using RNA-Seq analysis to analyse gene expression. The study identified genes, including those in the cyanogenesis pathway, that were differentially regulated in response to water-stress in domesticated and wild sorghum. In the domesticated sorghum, dhurrin content was significantly higher compared to that in the wild sorghum and increased with stress and decreased with age whereas in wild sorghum the dhurrin content remained negligible. The key genes in dhurrin biosynthesis, CYP79A1, CYP71E1 and UGT85B1, were shown to be highly expressed in S. bicolor. DHR and HNL encoding the dhurrinase and α-hydroxynitrilase catalysing bio-activation of dhurrin were also highly expressed in S. bicolor. Analysis of the differences in expression of cyanogenesis related genes between domesticated and wild sorghum species may allow the use of these genetic resources to produce more acyanogenic varieties in the future.


Subject(s)
Sorghum , Australia , Edible Grain , Nitriles , Sorghum/genetics , Water
2.
Physiol Mol Biol Plants ; 27(3): 563-576, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33854284

ABSTRACT

Aluminium (Al) toxicity in acid soils inhibits root elongation and development causing reduced water and nutrient uptake by the root system, which ultimately reduces the crop yield. This study established a high throughput hydroponics screening method and identified Al toxicity tolerant accessions from a set of putative acid tolerant lentil accessions. Four-day old lentil seedlings were screened at 5 µM Al (pH 4.5) for three days in hydroponics. Measured pre and post treatment root length was used to calculate the change in root length (ΔRL) and relative root growth (RRG%). A subset of 15 selected accessions were used for acid soil Al screening, and histochemical and biochemical analyses. Al treatment significantly reduced the ΔRL with an average of 32.3% reduction observed compared to the control. Approximately 1/4 of the focused identification of germplasm strategy accessions showed higher RRG% than the known tolerant line ILL6002 which has the RRG% of 37.9. Very tolerant accessions with RRG% of > 52% were observed in 5.4% of the total accessions. A selection index calculated based on all root traits in acid soil screening was highest in AGG70137 (636.7) whereas it was lowest in Precoz (76.3). All histochemical and biochemical analyses supported the hydroponic results as Northfield, AGG70137, AGG70561 and AGG70281 showed consistent good performance. The identified new sources of Al tolerant lentil germplasm can be used to breed new Al toxicity tolerant lentil varieties. The established high throughput hydroponic method can be routinely used for screening lentil breeding populations for Al toxicity tolerance. Future recommendations could include evaluation of the yield potential of the selected subset of accessions under acid soil field conditions, and the screening of a wider range of landrace accessions originating from areas with Al toxic acid soils.

3.
Microbiol Spectr ; 11(6): e0266323, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37823658

ABSTRACT

IMPORTANCE: Globally, viral diseases impair the growth and vigor of cultivated crops such as grains, leading to a significant reduction in quality, marketability, and competitiveness. As an island nation, Australia has a distinct advantage in using its border to prevent the introduction of damaging viruses, which threaten the continental agricultural sector. However, breeding programs in Australia rely on imported seeds as new sources of genetic diversity. As such, it is critical to remain vigilant in identifying new and emerging viral pathogens, by ensuring the availability of accurate genomic diagnostic tools at the grain biosecurity border. High-throughput sequencing offers game-changing opportunities in biosecurity routine testing. Genomic results are more accurate and informative compared to traditional molecular methods or biological indexing. The present work contributes to strengthening accurate phytosanitary screening, to safeguard the Australian grains industry, and expedite germplasm release to the end users.


Subject(s)
Fabavirus , Vicia faba , Vicia faba/genetics , Australia , Fabavirus/genetics , Sequence Analysis, RNA
4.
Plants (Basel) ; 9(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610615

ABSTRACT

Genetically diverse plant germplasm stored in ex-situ genebanks are excellent resources for breeding new high yielding and sustainable crop varieties to ensure future food security. Novel alleles have been discovered through routine genebank activities such as seed regeneration and characterization, with subsequent utilization providing significant genetic gains and improvements for the selection of favorable traits, including yield, biotic, and abiotic resistance. Although some genebanks have implemented cost-effective genotyping technologies through advances in DNA technology, the adoption of modern phenotyping is lagging. The introduction of advanced phenotyping technologies in recent decades has provided genebank scientists with time and cost-effective screening tools to obtain valuable phenotypic data for more traits on large germplasm collections during routine activities. The utilization of these phenotyping tools, coupled with high-throughput genotyping, will accelerate the use of genetic resources and fast-track the development of more resilient food crops for the future. In this review, we highlight current digital phenotyping methods that can capture traits during annual seed regeneration to enrich genebank phenotypic datasets. Next, we describe strategies for the collection and use of phenotypic data of specific traits for downstream research using high-throughput phenotyping technology. Finally, we examine the challenges and future perspectives of genebank phenomics.

5.
Front Plant Sci ; 11: 1108, 2020.
Article in English | MEDLINE | ID: mdl-32765575

ABSTRACT

Sorghum bicolor (L.) Moench is a multipurpose food crop which is ranked among the top five cereal crops in the world, and is used as a source of food, fodder, feed, and fuel. The genus Sorghum consists of 24 diverse species. Cultivated sorghum was derived from the wild progenitor S. bicolor subsp. verticilliflorum, which is commonly distributed in Africa. Archeological evidence has identified regions in Sudan, Ethiopia, and West Africa as centers of origin of sorghum, with evidence for more than one domestication event. The taxonomy of the genus is not fully resolved, with alternative classifications that should be resolved by further molecular analysis. Sorghum can withstand severe droughts which makes it suitable to grow in regions where other major crops cannot be grown. Wild relatives of many crops have played significant roles as genetic resources for crop improvement. Although there have been many studies of domesticated sorghum, few studies have reported on its wild relatives. In Sorghum, some species are widely distributed while others are very restricted. Of the 17 native sorghum species found in Australia, none have been cultivated. Isolation of these wild species from domesticated crops makes them a highly valuable system for studying the evolution of adaptive traits such as biotic and abiotic stress tolerance. The diversity of the genus Sorghum has probably arisen as a result of the extensive variability of the habitats over which they are distributed. The wild gene pool of sorghum may, therefore, harbor many useful genes for abiotic and biotic stress tolerance. While there are many examples of successful examples of introgression of novel alleles from the wild relatives of other species from Poaceae, such as rice, wheat, maize, and sugarcane, studies of introgression from wild sorghum are limited. An improved understanding of wild sorghums will better allow us to exploit this previously underutilized gene pool for the production of more resilient crops.

6.
PLoS One ; 13(11): e0207788, 2018.
Article in English | MEDLINE | ID: mdl-30452470

ABSTRACT

Early vigour of seedlings is a beneficial trait of field pea (Pisum sativum L.) that contributes to weed control, water use efficiency and is likely to contribute to yield under certain environments. Although breeding is considered the most effective approach to improve early vigour of field pea, the absence of a robust and high-throughput phenotyping tool to dissect this complex trait is currently a major obstacle of genetic improvement programs to address this issue. To develop this tool, separate trials on 44 genetically diverse field pea genotypes were conducted in the automated plant phenotyping platform of Plant Phenomics Victoria, Horsham and in the field, respectively. High correlation between estimated plant parameters derived from the automated phenotyping platform and important early vigour traits such as shoot biomass, leaf area and plant height indicated that the derived plant parameters can be used to predict vigour traits in field pea seedlings. Plant growth analysis demonstrated that the "broken-stick" model fitted well with the growth pattern of all field pea genotypes and can be used to determine the linear growth phase. Further analysis suggested that the estimated plant parameters collected at the linear growth phase can effectively differentiate early vigour across field pea genotypes. High correlation between normalised difference vegetation indices captured from the field trial and estimated shoot biomass and top-view area confirmed the consistent performance of early vigour field pea genotypes under controlled and field environments. Overall, our results demonstrated that this robust screening tool is highly applicable and will enable breeding programs to rapidly identify early vigour traits and utilise germplasm to contribute to the genetic improvement of field peas.


Subject(s)
Environment, Controlled , Image Processing, Computer-Assisted , Phenotype , Pisum sativum/growth & development , Seedlings/growth & development , Automation , Genotype , Pisum sativum/genetics , Seedlings/genetics
SELECTION OF CITATIONS
SEARCH DETAIL