Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Tissue Eng Regen Med ; 12(5): 1261-1272, 2018 05.
Article in English | MEDLINE | ID: mdl-29490116

ABSTRACT

Repair or regeneration of hyaline cartilage in knees, shoulders, intervertebral discs, and other assorted joints is a major therapeutic target. To date, therapeutic strategies utilizing chondrocytes or mesenchymal stem cells are limited by expandability or the generation of mechanically inferior cartilage. Our objective is to generate robust cartilage-specific matrix from human mesenchymal stem cells suitable for further therapeutic development. Human mesenchymal stem cells, in an alginate 3D format, were supplied with individual sugars and chains which comprise the glycan component of proteoglycans in articular cartilage (galactose, hyaluronic acid, glucuronic acid, and xylose) during chondrogenesis. After an initial evaluation for proteoglycan deposition utilizing Alcian blue, the tissue was further evaluated for viability, structural elements, and hypertrophic status. With the further addition of serum, a substantial increase was observed in viability, the amount of proteoglycan deposition, glycosaminoglycan production, and an enhancement of Hyaluronic Acid, Collagen II and Aggrecan deposition. Suppression of hypertrophic markers (COL1A1, COL10A1, MMP13, and RUNX2) was also observed. When mesenchymal stem cells were supplied with the raw building materials of proteoglycans and a limited amount of serum during chondrogenesis, it resulted in the generation of viable hyaline-like cartilage with deposition of structural components which exceeded previously reported in vitro-based cartilage.


Subject(s)
Carbohydrates/pharmacology , Cell Differentiation , Chondrogenesis/drug effects , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/cytology , Cartilage, Articular/drug effects , Cartilage, Articular/growth & development , Cell Differentiation/drug effects , Cell Survival/drug effects , Collagen Type II/metabolism , Glycosaminoglycans/metabolism , Humans , Hyaluronic Acid/pharmacology , Mesenchymal Stem Cells/drug effects , Proteoglycans/metabolism , Serum
2.
Sci Rep ; 6: 34478, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27686862

ABSTRACT

Human pluripotent stem cells (PSC) have the potential to revolutionize regenerative medicine. However undifferentiated PSC can form tumors and strict quality control measures and safety studies must be conducted before clinical translation. Here we describe preclinical tumorigenicity and biodistribution safety studies that were required by the US Food and Drug Administration (FDA) and Australian Therapeutic Goods Administration (TGA) prior to conducting a Phase I clinical trial evaluating the safety and tolerability of human parthenogenetic stem cell derived neural stem cells ISC-hpNSC for treating Parkinson's disease (ClinicalTrials.gov Identifier NCT02452723). To mitigate the risk of having residual PSC in the final ISC-hpNSC population, we conducted sensitive in vitro assays using flow cytometry and qRT-PCR analyses and in vivo assays to determine acute toxicity, tumorigenicity and biodistribution. The results from these safety studies show the lack of residual undifferentiated PSC, negligible tumorigenic potential by ISC-hpNSC and provide additional assurance to their clinical application.

3.
Cell Transplant ; 25(11): 1945-1966, 2016 11.
Article in English | MEDLINE | ID: mdl-27213850

ABSTRACT

Cell therapy has attracted considerable interest as a promising therapeutic alternative for patients with Parkinson's disease (PD). Clinical studies have shown that grafted fetal neural tissue can achieve considerable biochemical and clinical improvements in PD. However, the source of fetal tissue grafts is limited and ethically controversial. Human parthenogenetic stem cells offer a good alternative because they are derived from unfertilized oocytes without destroying potentially viable human embryos and can be used to generate an unlimited supply of neural cells for transplantation. We have previously reported that human parthenogenetic stem cell-derived neural stem cells (hpNSCs) successfully engraft, survive long term, and increase brain dopamine (DA) levels in rodent and nonhuman primate models of PD. Here we report the results of a 12-month transplantation study of hpNSCs in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned African green monkeys with moderate to severe clinical parkinsonian symptoms. The hpNSCs manufactured under current good manufacturing practice (cGMP) conditions were injected bilaterally into the striatum and substantia nigra of immunosuppressed monkeys. Transplantation of hpNSCs was safe and well tolerated by the animals with no dyskinesia, tumors, ectopic tissue formation, or other test article-related serious adverse events. We observed that hpNSCs promoted behavioral recovery; increased striatal DA concentration, fiber innervation, and number of dopaminergic neurons; and induced the expression of genes and pathways downregulated in PD compared to vehicle control animals. These results provide further evidence for the clinical translation of hpNSCs and support the approval of the world's first pluripotent stem cell-based phase I/IIa study for the treatment of PD (Clinical Trial Identifier NCT02452723).


Subject(s)
MPTP Poisoning/therapy , Neural Stem Cells/transplantation , Recovery of Function/physiology , Animals , Behavior, Animal , Brain/metabolism , Brain/pathology , Cell Differentiation , Cells, Cultured , Chlorocebus aethiops , Cluster Analysis , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Female , Gene Expression Regulation , Gene Regulatory Networks , Humans , Immunohistochemistry , Karyotype , MPTP Poisoning/chemically induced , MPTP Poisoning/pathology , Male , Neural Stem Cells/cytology , Parthenogenesis
4.
J Phys Chem B ; 109(23): 11712-9, 2005 Jun 16.
Article in English | MEDLINE | ID: mdl-16852438

ABSTRACT

The interaction of Al2O3 and CeO2 thin films with sulfur dioxide (2.5 mbar) or with mixtures of SO2 with O2 (5 mbar) at various temperatures (30-400 degrees C) was studied by X-ray photoelectron spectroscopy (XPS). The analysis of temperature-induced transformations of S2p spectra allowed us to identify sulfite and sulfate species and determine the conditions of their formation on the oxide surfaces. Sulfite ions, SO3(2-), which are characterized by the S2p(3/2) binding energy (BE) of approximately 167.5 eV, were shown to be formed during the interaction of the oxide films with pure SO2 at temperatures < or =200 degrees C, whereas sulfate ions, SO4(2-), with BE (S2p(3/2)) approximately 169 eV were produced at temperatures > or =300 degrees C. The formation of both the sulfite and sulfate species proceeds more efficiently in the case of CeO2. The addition of oxygen to SO2 suppresses the formation of the sulfite species on both oxides and facilitates the formation of the sulfate species. Again, this enhancement is more significant for the CeO2 film than for the Al2O3 one. The sulfation of the CeO2 film is accompanied by a reduction of Ce(IV) ions to Ce(III) ones, both in the absence and in the presence of oxygen. It has been concluded that the amount of the sulfates on the CeO2 surface treated with the SO2 + O2 mixture at > or =300 degrees C corresponds to the formation of a 3D phase of the Ce(III) sulfate. The sulfation of Al2O3 is limited by the surface of the oxide film.

5.
Cell Transplant ; 24(4): 681-90, 2015.
Article in English | MEDLINE | ID: mdl-25839189

ABSTRACT

Recent studies indicate that human pluripotent stem cell (PSC)-based therapies hold great promise in Parkinson's disease (PD). Clinical studies have shown that grafted fetal neural tissue can achieve considerable biochemical and clinical improvements in PD. However, the source of fetal tissue grafts is limited and ethically controversial. Human parthenogenetic stem cells offer a good alternative because they are derived from unfertilized oocytes without destroying viable human embryos and can be used to generate an unlimited supply of neural stem cells for transplantation. Here we evaluate for the first time the safety and engraftment of human parthenogenetic stem cell-derived neural stem cells (hpNSCs) in two animal models: 6-hydroxydopamine (6-OHDA)-lesioned rodents and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhuman primates (NHPs). In both rodents and nonhuman primates, we observed successful engraftment and higher dopamine levels in hpNSC-transplanted animals compared to vehicle control animals, without any adverse events. These results indicate that hpNSCs are safe, well tolerated, and could potentially be a source for cell-based therapies in PD.


Subject(s)
MPTP Poisoning/therapy , Neural Stem Cells/transplantation , Ovum/cytology , Parkinson Disease, Secondary/therapy , Animals , Brain/metabolism , Brain/pathology , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Disease Models, Animal , Dopamine/analysis , Dopamine/metabolism , Humans , Immunohistochemistry , Microscopy, Fluorescence , Neural Stem Cells/cytology , Oxidopamine/toxicity , Parkinson Disease, Secondary/chemically induced , Rats , Rats, Sprague-Dawley , Tissue Distribution , Transplantation, Heterologous
6.
Sci Rep ; 3: 1463, 2013.
Article in English | MEDLINE | ID: mdl-23492920

ABSTRACT

New small molecules that regulate the step-wise differentiation of human pluripotent stem cells into dopaminergic neurons have been identified. The steroid, guggulsterone, was found to be the most effective inducer of neural stem cells into dopaminergic neurons. These neurons are extensively characterized and shown to be functional. We believe this new approach offers a practical route to creating neurons of sufficient quality to be used to treat Parkinson's disease patients.


Subject(s)
Cell Differentiation/drug effects , Dopaminergic Neurons/cytology , Neural Stem Cells/cytology , Pluripotent Stem Cells/cytology , Pregnenediones/pharmacology , Cell Culture Techniques , Cell Line , Cell Transplantation/methods , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/physiology , Gene Expression Profiling , Humans , Membrane Potentials/drug effects , Neural Stem Cells/metabolism , Neural Stem Cells/physiology , Oligonucleotide Array Sequence Analysis , Parkinson Disease/surgery , Patch-Clamp Techniques , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/physiology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL