Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Article in German | MEDLINE | ID: mdl-38190822

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common condition in intensive care medicine. Various intra- and extrapulmonal causes may trigger an epithelial and endothelial permeability increase, which leads to impaired gas exchange due to fluid overload of the alveoli and transmigration of leukocytes. This results in hypoxemia and hypercapnia, as well as deleterious consequences for the macro- and microcirculation with the risk of multi-organ failure and high mortality. This review summarizes ARDS pathophysiology and clinical consequences.


Subject(s)
Respiratory Distress Syndrome , Water-Electrolyte Imbalance , Humans , Respiratory Distress Syndrome/therapy , Critical Care , Multiple Organ Failure
2.
BMC Pulm Med ; 23(1): 368, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37789367

ABSTRACT

BACKGROUND: Current COVID-19 guidelines recommend the early use of systemic corticoids for COVID-19 acute respiratory distress syndrome (ARDS). It remains unknown if high-dose methylprednisolone pulse therapy (MPT) ameliorates refractory COVID-19 ARDS after many days of mechanical ventilation or rapid deterioration with or without extracorporeal membrane oxygenation (ECMO). METHODS: This is a retrospective observational study. Consecutive patients with COVID-19 ARDS treated with a parenteral high-dose methylprednisolone pulse therapy at the intensive care units (ICU) of two University Hospitals between January 1st 2021 and November 30st 2022 were included. Clinical data collection was at ICU admission, start of MPT, 3-, 10- and 14-days post MPT. RESULTS: Thirty-seven patients (mean age 55 ± 12 years) were included in the study. MPT started at a mean of 17 ± 12 days after mechanical ventilation. Nineteen patients (54%) received ECMO support when commencing MPT. Mean paO2/FiO2 significantly improved 3- (p = 0.034) and 10 days (p = 0.0313) post MPT. The same applied to the necessary FiO2 10 days after MPT (p = 0.0240). There were no serious infectious complications. Twenty-four patients (65%) survived to ICU discharge, including 13 out of 20 (65%) needing ECMO support. CONCLUSIONS: Late administration of high-dose MPT in a critical subset of refractory COVID-19 ARDS patients improved respiratory function and was associated with a higher-than-expected survival of 65%. These data suggest that high-dose MPT may be a viable salvage therapy in refractory COVID-19 ARDS.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Adult , Middle Aged , Aged , Respiratory Distress Syndrome/drug therapy , Retrospective Studies , Respiration, Artificial , Methylprednisolone
3.
Article in German | MEDLINE | ID: mdl-37192639

ABSTRACT

The use of temporary mechanical circulatory support (tMCS) devices and in particular the increasing use of the Impella device family has gained significant interest over the last two decades. Nowadays, its use plays a well-established key role in both the treatment of cardiogenic shock, and as a preventive and protective therapeutic option during high-risk procedures in both cardiac surgery and cardiology, such as complex percutaneous interventions (protected PCI). Thus, it is not surprising that the Impella device is more and more present in the perioperative setting and especially in patients on intensive care units. Despite the numerous advantages such as cardiac resting and hemodynamic stabilization, potential adverse events exist, which may lead to severe, but preventable complications, so that adequate education, early recognition of such events and a subsequent adequate management are crucial in patients with tMCS. This article provides an overview especially for anesthesiologists and intensivists focusing on technical basics, indications and contraindications for its use with special focus on the intra- and postoperative management. Furthermore, troubleshooting for most common complications for patients on Impella support is provided.


Subject(s)
Anesthesia , Cardiac Surgical Procedures , Heart-Assist Devices , Percutaneous Coronary Intervention , Humans , Percutaneous Coronary Intervention/methods , Shock, Cardiogenic/etiology , Shock, Cardiogenic/surgery , Critical Care , Heart-Assist Devices/adverse effects , Treatment Outcome , Retrospective Studies
4.
Crit Care ; 26(1): 268, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36068584

ABSTRACT

BACKGROUND: The clinical significance of vitamin D administration in critically ill patients remains inconclusive. The purpose of this systematic review with meta-analysis was to investigate the effect of vitamin D and its metabolites on major clinical outcomes in critically ill patients, including a subgroup analysis based on vitamin D status and route of vitamin D administration. METHODS: Major databases were searched through February 9, 2022. Randomized controlled trials of adult critically ill patients with an intervention group receiving vitamin D or its metabolites were included. Random-effect meta-analyses were performed to estimate the pooled risk ratio (dichotomized outcomes) or mean difference (continuous outcomes). Risk of bias assessment included the Cochrane tool for assessing risk of bias in randomized trials. RESULTS: Sixteen randomized clinical trials with 2449 patients were included. Vitamin D administration was associated with lower overall mortality (16 studies: risk ratio 0.78, 95% confidence interval 0.62-0.97, p = 0.03; I2 = 30%), reduced intensive care unit length of stay (12 studies: mean difference - 3.13 days, 95% CI - 5.36 to - 0.89, n = 1250, p = 0.006; I2 = 70%), and shorter duration of mechanical ventilation (9 studies: mean difference - 5.07 days, 95% CI - 7.42 to - 2.73, n = 572, p < 0.0001; I2 = 54%). Parenteral administration was associated with a greater effect on overall mortality than enteral administration (test of subgroup differences, p = 0.04), whereas studies of parenteral subgroups had lower quality. There were no subgroup differences based on baseline vitamin D levels. CONCLUSIONS: Vitamin D supplementation in critically ill patients may reduce mortality. Parenteral administration might be associated with a greater impact on mortality. Heterogeneity and assessed certainty among the studies limits the generalizability of the results. TRIAL REGISTRATION: PROSPERO international prospective database of systematic reviews (CRD42021256939-05 July 2021).


Subject(s)
Critical Illness , Vitamin D , Adult , Critical Illness/therapy , Humans , Intensive Care Units , Length of Stay , Parenteral Nutrition/methods , Randomized Controlled Trials as Topic , Vitamin D/therapeutic use , Vitamins
5.
Crit Care ; 26(1): 23, 2022 01 19.
Article in English | MEDLINE | ID: mdl-35045885

ABSTRACT

BACKGROUND: Parenteral lipid emulsions in critical care are traditionally based on soybean oil (SO) and rich in pro-inflammatory omega-6 fatty acids (FAs). Parenteral nutrition (PN) strategies with the aim of reducing omega-6 FAs may potentially decrease the morbidity and mortality in critically ill patients. METHODS: A systematic search of MEDLINE, EMBASE, CINAHL and CENTRAL was conducted to identify all randomized controlled trials in critically ill patients published from inception to June 2021, which investigated clinical omega-6 sparing effects. Two independent reviewers extracted bias risk, treatment details, patient characteristics and clinical outcomes. Random effect meta-analysis was performed. RESULTS: 1054 studies were identified in our electronic search, 136 trials were assessed for eligibility and 26 trials with 1733 critically ill patients were included. The median methodologic score was 9 out of 14 points (95% confidence interval [CI] 7, 10). Omega-6 FA sparing PN in comparison with traditional lipid emulsions did not decrease overall mortality (20 studies; risk ratio [RR] 0.91; 95% CI 0.76, 1.10; p = 0.34) but hospital length of stay was substantially reduced (6 studies; weighted mean difference [WMD] - 6.88; 95% CI - 11.27, - 2.49; p = 0.002). Among the different lipid emulsions, fish oil (FO) containing PN reduced the length of intensive care (8 studies; WMD - 3.53; 95% CI - 6.16, - 0.90; p = 0.009) and rate of infectious complications (4 studies; RR 0.65; 95% CI 0.44, 0.95; p = 0.03). When FO was administered as a stand-alone medication outside PN, potential mortality benefits were observed compared to standard care. CONCLUSION: Overall, these findings highlight distinctive omega-6 sparing effects attributed to PN. Among the different lipid emulsions, FO in combination with PN or as a stand-alone treatment may have the greatest clinical impact. Trial registration PROSPERO international prospective database of systematic reviews (CRD42021259238).


Subject(s)
Critical Illness , Parenteral Nutrition , Critical Illness/therapy , Emulsions , Fish Oils/therapeutic use , Humans
6.
Article in German | MEDLINE | ID: mdl-35451036

ABSTRACT

Vaccination against severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) provides effective protection against infection or severe coronavirus disease 2019 (COVID-19). Moreover, it is regarded as the single most important measure to end the pandemic. Individual vaccination effectiveness is often judged via measurement of anti-SARS-CoV-2 antibodies. However, considering the complexity of the humoral and cellular immune response the question arises whether the relation of anti-SARS-CoV-2 antibody titers and COVID-19 vaccine effectiveness is a myth or a fact? The current article aims to answer this question and provide a short review of the immunological mechanisms of SARS-CoV-2 vaccination. Recommendations for clinical practice are given based on the current evidence and known problems of anti-SARS-CoV-2 antibody measurements after vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/prevention & control , Humans , SARS-CoV-2 , Vaccination
7.
Thromb J ; 19(1): 39, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078393

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) associated coagulopathy (CAC) leads to thromboembolic events in a high number of critically ill COVID-19 patients. However, specific diagnostic or therapeutic algorithms for CAC have not been established. In the current study, we analyzed coagulation abnormalities with point-of-care testing (POCT) and their relation to hemostatic complications in patients suffering from COVID-19 induced Acute Respiratory Distress Syndrome (ARDS). Our hypothesis was that specific diagnostic patterns can be identified in patients with COVID-19 induced ARDS at risk of thromboembolic complications utilizing POCT. METHODS: This is a single-center, retrospective observational study. Longitudinal data from 247 rotational thromboelastometries (Rotem®) and 165 impedance aggregometries (Multiplate®) were analysed in 18 patients consecutively admitted to the ICU with a COVID-19 induced ARDS between March 12th to June 30th, 2020. RESULTS: Median age was 61 years (IQR: 51-69). Median PaO2/FiO2 on admission was 122 mmHg (IQR: 87-189), indicating moderate to severe ARDS. Any form of hemostatic complication occurred in 78 % of the patients with deep vein/arm thrombosis in 39 %, pulmonary embolism in 22 %, and major bleeding in 17 %. In Rotem® elevated A10 and maximum clot firmness (MCF) indicated higher clot strength. The delta between EXTEM A10 minus FIBTEM A10 (ΔA10) > 30 mm, depicting the sole platelet-part of clot firmness, was associated with a higher risk of thromboembolic events (OD: 3.7; 95 %CI 1.3-10.3; p = 0.02). Multiplate® aggregometry showed hypoactive platelet function. There was no correlation between single Rotem® and Multiplate® parameters at intensive care unit (ICU) admission and thromboembolic or bleeding complications. CONCLUSIONS: Rotem® and Multiplate® results indicate hypercoagulability and hypoactive platelet dysfunction in COVID-19 induced ARDS but were all in all poorly related to hemostatic complications..

8.
Int J Mol Sci ; 22(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33810024

ABSTRACT

Pharmacologic cardiac conditioning increases the intrinsic resistance against ischemia and reperfusion (I/R) injury. The cardiac conditioning response is mediated via complex signaling networks. These networks have been an intriguing research field for decades, largely advancing our knowledge on cardiac signaling beyond the conditioning response. The centerpieces of this system are the mitochondria, a dynamic organelle, almost acting as a cell within the cell. Mitochondria comprise a plethora of functions at the crossroads of cell death or survival. These include the maintenance of aerobic ATP production and redox signaling, closely entwined with mitochondrial calcium handling and mitochondrial permeability transition. Moreover, mitochondria host pathways of programmed cell death impact the inflammatory response and contain their own mechanisms of fusion and fission (division). These act as quality control mechanisms in cellular ageing, release of pro-apoptotic factors and mitophagy. Furthermore, recently identified mechanisms of mitochondrial regeneration can increase the capacity for oxidative phosphorylation, decrease oxidative stress and might help to beneficially impact myocardial remodeling, as well as invigorate the heart against subsequent ischemic insults. The current review highlights different pathways and unresolved questions surrounding mitochondria in myocardial I/R injury and pharmacological cardiac conditioning.


Subject(s)
Ischemic Preconditioning, Myocardial , Mitochondria/drug effects , Mitochondria/metabolism , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Cell Death/drug effects , Humans , Ischemic Preconditioning, Myocardial/methods , Mitochondrial Dynamics/drug effects , Myocardial Ischemia/drug therapy , Myocardial Ischemia/etiology , Myocardial Reperfusion Injury/etiology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Oxidative Phosphorylation/drug effects , Oxidative Stress/drug effects , Regeneration , Signal Transduction/drug effects , Translational Research, Biomedical
9.
J Neuroinflammation ; 14(1): 148, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28738885

ABSTRACT

BACKGROUND: MP4-induced experimental autoimmune encephalomyelitis (EAE) is a mouse model of multiple sclerosis (MS), which enables targeted research on B cells, currently much discussed protagonists in MS pathogenesis. Here, we used this model to study the impact of the S1P1 receptor modulator FTY720 (fingolimod) on the autoreactive B cell and antibody response both in the periphery and the central nervous system (CNS). METHODS: MP4-immunized mice were treated orally with FTY720 for 30 days at the peak of disease or 50 days after EAE onset. The subsequent disease course was monitored and the MP4-specific B cell/antibody response was measured by ELISPOT and ELISA. RNA sequencing was performed to determine any effects on B cell-relevant gene expression. S1P1 receptor expression by peripheral T and B cells, B cell subset distribution in the spleen and B cell infiltration into the CNS were studied by flow cytometry. The formation of B cell aggregates and of tertiary lymphoid organs (TLOs) was evaluated by histology and immunohistochemistry. Potential direct effects of FTY720 on B cell aggregation were studied in vitro. RESULTS: FTY720 significantly attenuated clinical EAE when treatment was initiated at the peak of EAE. While there was a significant reduction in the number of T cells in the blood after FTY720 treatment, B cells were only slightly diminished. Yet, there was evidence for the modulation of B cell receptor-mediated signaling upon FTY720 treatment. In addition, we detected a significant increase in the percentage of B220+ B cells in the spleen both in acute and chronic EAE. Whereas acute treatment completely abrogated B cell aggregate formation in the CNS, the numbers of infiltrating B cells and plasma cells were comparable between vehicle- and FTY720-treated mice. In addition, there was no effect on already developed aggregates in chronic EAE. In vitro B cell aggregation assays suggested the absence of a direct effect of FTY720 on B cell aggregation. However, FTY720 impacted the evolution of B cell aggregates into TLOs. CONCLUSIONS: The data suggest differential effects of FTY720 on the B cell compartment in MP4-induced EAE.


Subject(s)
B-Lymphocytes/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Fingolimod Hydrochloride/therapeutic use , Immunosuppressive Agents/therapeutic use , Animals , Antigens, CD19/metabolism , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Calcium-Binding Proteins/metabolism , Cell Aggregation/drug effects , Central Nervous System/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/blood , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Enzyme-Linked Immunospot Assay , Female , Flow Cytometry , Freund's Adjuvant/toxicity , Lymph Nodes/pathology , Mice , Myelin Basic Protein/immunology , Myelin Basic Protein/toxicity , Myelin Proteolipid Protein/immunology , Myelin Proteolipid Protein/toxicity , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/toxicity , Spleen/pathology , Time Factors
12.
J Thromb Haemost ; 22(8): 2316-2330, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763215

ABSTRACT

BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a lifesaving therapy in patients with acute respiratory distress syndrome (ARDS). Hemostatic complications are frequently observed in patients on ECMO and limit the success of this therapy. Platelets are key mediators of hemostasis enabling activation, aggregation, and thrombus formation by coming in contact with exposed matrix proteins via their surface receptors such as glycoprotein (GP) VI or GPIb/V/IX. Recent research has elucidated a regulatory role of the GPV subunit. The cleaved soluble GPV (sGPV) ectodomain was identified to spatiotemporally control fibrin formation through complex formation with thrombin. OBJECTIVES: We aimed to decipher the impact of ECMO on platelet phenotype and function, including the role of GPV and plasmatic sGPV. METHODS: We recruited 36 patients with ARDS in the wake of COVID-19 pneumonia and performed a longitudinal comparison of platelet phenotype and function in non-ECMO (n = 23) vs ECMO (n = 13) compared with those of healthy controls. Patients were assessed at up to 3 time points (t1 = days 1-3; t2 = days 4-6; and t3 = days 7-14 after cannulation/study inclusion). RESULTS: Agonist-induced platelet activation was assessed by flow cytometry and revealed decreased GPIIb/IIIa activation and α-granule release in all ARDS patients. During ECMO treatment, agonist-induced δ-granule release continuously decreased, which was independently confirmed by electron microscopy and was associated with a prolonged in vitro bleeding time. GPV expression on the platelet surface markedly decreased in ECMO patients compared with that in non-ECMO patients. Plasma sGPV levels were increased in ECMO patients and were associated with poor outcome. CONCLUSION: Our data demonstrate an ECMO-intrinsic platelet δ-granule deficiency and hemostatic dysfunction beyond the underlying ARDS.


Subject(s)
Blood Platelets , COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Humans , COVID-19/complications , COVID-19/blood , COVID-19/therapy , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/blood , Male , Female , Middle Aged , Blood Platelets/metabolism , Adult , Aged , Platelet Activation , Platelet Membrane Glycoproteins/metabolism , Phenotype , SARS-CoV-2 , Case-Control Studies , Platelet Glycoprotein GPIb-IX Complex
13.
Nutr Clin Pract ; 38(1): 46-54, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36156315

ABSTRACT

In 1747, an important milestone in the history of clinical research was set, as the Scottish surgeon James Lind conducted the first randomized controlled trial. Lind was interested in scurvy, a severe vitamin C deficiency which caused the death of thousands of British seamen. He found that a dietary intervention with oranges and lemons, which are rich in vitamin C by nature, was effective to recover from scurvy. Because of its antioxidative properties and involvement in many biochemical processes, the essential micronutrient vitamin C plays a key role in the human biology. Moreover, the use of vitamin C in critical illness-a condition also resulting in death of thousands in the 21st century-has gained increasing interest, as it may restore vascular responsiveness to vasoactive agents, ameliorate microcirculatory blood flow, preserve endothelial barriers, augment bacterial defense, and prevent apoptosis. Because of its redox potential and powerful antioxidant capacity, vitamin C represents an inexpensive and safe antioxidant, with the potential to modify the inflammatory cascade and improve clinical outcomes of critically ill patients. This narrative review aims to update and provide an overview on the role of vitamin C in the human biology and in critically ill patients, and to summarize current evidence on the use of vitamin C in diverse populations of critically ill patients, in specific focusing on patients with sepsis and coronavirus disease 2019.


Subject(s)
COVID-19 , Scurvy , Male , Humans , Ascorbic Acid/pharmacology , Ascorbic Acid/therapeutic use , Scurvy/drug therapy , Scurvy/etiology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/physiology , Critical Illness/therapy , Microcirculation , COVID-19/complications , Vitamins/therapeutic use
14.
Nutr Clin Pract ; 38(3): 479-498, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37021324

ABSTRACT

Medical nutrition therapy (MNT) represents an essential element in the medical care of critically ill patients admitted to an intensive care unit (ICU). Increasing awareness exists that energy and nutrients not only preserve body structures such as lean body/muscle mass but also represent promising therapeutic elements to target the profound metabolic, inflammatory, endocrinologic, and immunologic alterations occurring during critical illness. However, despite intense research activities for years, diverse aspects of MNT such as the optimal timing, dosing, and composition of energy and macronutrient supply, as well as the role of micronutrients, are still an issue of debate resulting from strong heterogeneity in methods and findings of respective studies. These discrepancies are also reflected in diverging recommendations of international clinical nutrition guidelines for specific topics. In addition, implementing targeted, personalized MNT strategies in routine clinical practice underlies difficulties and challenges resulting from disease-specific issues and/or organizational, structural, and educational aspects. This narrative review aims to summarize the most recent evidence relevant to clinical practice on selected aspects of MNT in adult patients in the ICU and to provide guidance for implementing evidence-based approaches for adequate energy and nutrient supply in the ICU setting.


Subject(s)
Critical Illness , Enteral Nutrition , Humans , Enteral Nutrition/methods , Critical Illness/therapy , Critical Care/methods , Nutritional Status , Micronutrients , Intensive Care Units
15.
Sci Rep ; 13(1): 6785, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100832

ABSTRACT

Long-term sequelae in hospitalized Coronavirus Disease 2019 (COVID-19) patients may result in limited quality of life. The current study aimed to determine health-related quality of life (HRQoL) after COVID-19 hospitalization in non-intensive care unit (ICU) and ICU patients. This is a single-center study at the University Hospital of Wuerzburg, Germany. Patients eligible were hospitalized with COVID-19 between March 2020 and December 2020. Patients were interviewed 3 and 12 months after hospital discharge. Questionnaires included the European Quality of Life 5 Dimensions 5 Level (EQ-5D-5L), patient health questionnaire-9 (PHQ-9), the generalized anxiety disorder 7 scale (GAD-7), FACIT fatigue scale, perceived stress scale (PSS-10) and posttraumatic symptom scale 10 (PTSS-10). 85 patients were included in the study. The EQ5D-5L-Index significantly differed between non-ICU (0.78 ± 0.33 and 0.84 ± 0.23) and ICU (0.71 ± 0.27; 0.74 ± 0.2) patients after 3- and 12-months. Of non-ICU 87% and 80% of ICU survivors lived at home without support after 12 months. One-third of ICU and half of the non-ICU patients returned to work. A higher percentage of ICU patients was limited in their activities of daily living compared to non-ICU patients. Depression and fatigue were present in one fifth of the ICU patients. Stress levels remained high with only 24% of non-ICU and 3% of ICU patients (p = 0.0186) having low perceived stress. Posttraumatic symptoms were present in 5% of non-ICU and 10% of ICU patients. HRQoL is limited in COVID-19 ICU patients 3- and 12-months post COVID-19 hospitalization, with significantly less improvement at 12-months compared to non-ICU patients. Mental disorders were common highlighting the complexity of post-COVID-19 symptoms as well as the necessity to educate patients and primary care providers about monitoring mental well-being post COVID-19.


Subject(s)
COVID-19 , Stress Disorders, Post-Traumatic , Humans , Quality of Life , Prospective Studies , Activities of Daily Living , Stress Disorders, Post-Traumatic/epidemiology , COVID-19/epidemiology , Intensive Care Units , Fatigue
16.
Intensive Care Med Exp ; 11(1): 89, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063975

ABSTRACT

BACKGROUND: Recent data from the randomized SUSTAIN CSX trial could not confirm clinical benefits from perioperative selenium treatment in high-risk cardiac surgery patients. Underlying reasons may involve inadequate biosynthesis of glutathione peroxidase (GPx3), which is a key mediator of selenium's antioxidant effects. This secondary analysis aimed to identify patients with an increase in GPx3 activity following selenium treatment. We hypothesize that these responders might benefit from perioperative selenium treatment. METHODS: Patients were selected based on the availability of selenium biomarker information. Four subgroups were defined according to the patient's baseline status, including those with normal kidney function, reduced kidney function, selenium deficiency, and submaximal GPx3 activity. RESULTS: Two hundred and forty-four patients were included in this analysis. Overall, higher serum concentrations of selenium, selenoprotein P (SELENOP) and GPx3 were correlated with less organ injury. GPx3 activity at baseline was predictive of 6-month survival (AUC 0.73; p = 0.03). While selenium treatment elevated serum selenium and SELENOP concentrations but not GPx3 activity in the full patient cohort, subgroup analyses revealed that GPx3 activity increased in patients with reduced kidney function, selenium deficiency and low to moderate GPx3 activity. Clinical outcomes did not vary between selenium treatment and placebo in any of these subgroups, though the study was not powered to conclusively detect differences in outcomes. CONCLUSIONS: The identification of GPx3 responders encourages further refined investigations into the treatment effects of selenium in high-risk cardiac surgery patients.

17.
Clin Nutr ; 41(12): 3089-3095, 2022 12.
Article in English | MEDLINE | ID: mdl-33745749

ABSTRACT

BACKGROUND & AIMS: Vitamin D's pleiotropic effects include immune modulation, and its supplementation has been shown to prevent respiratory tract infections. The effectivity of vitamin D as a therapeutic intervention in critical illness remains less defined. The current study analyzed clinical and immunologic effects of vitamin D levels in patients suffering from coronavirus disease 2019 (COVID-19) induced acute respiratory distress syndrome (ARDS). METHODS: This was a single-center retrospective study in patients receiving intensive care with a confirmed SARS-CoV-2 infection and COVID-19 ARDS. 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D serum levels, pro- and anti-inflammatory cytokines and immune cell subsets were measured on admission as well as after 10-15 days. Clinical parameters were extracted from the patient data management system. Standard operating procedures included the daily administration of vitamin D3 via enteral feeding. RESULTS: A total of 39 patients with COVID-19 ARDS were eligible, of which 26 were included in this study as data on vitamin D status was available. 96% suffered from severe COVID-19 ARDS. All patients without prior vitamin D supplementation (n = 22) had deficient serum levels of 25-hydroxyvitamin D. Vitamin D supplementation resulted in higher serum levels of 25-hydroxyvitamin D but not did not increase 1,25-dihydroxyvitamin D levels after 10-15 days. Clinical parameters did not differ between patients with sufficient or deficient levels of 25-hydroxyvitamin D. Only circulating plasmablasts were higher in patients with 25-hydroxyvitamin D levels ≥30 ng/ml (p = 0.029). Patients with 1,25-dihydroxyvitamin D levels below 20 pg/ml required longer mechanical ventilation (p = 0.045) and had a worse acute physiology and chronic health evaluation (APACHE) II score (p = 0.048). CONCLUSION: The vast majority of COVID-19 ARDS patients had vitamin D deficiency. 25-hydroxyvitamin D status was not related to changes in clinical course, whereas low levels of 1,25-dihydroxyvitamin D were associated with prolonged mechanical ventilation and a worse APACHE II score.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Vitamin D Deficiency , Humans , COVID-19/complications , Critical Illness/therapy , Retrospective Studies , SARS-CoV-2 , Vitamin D , Respiratory Distress Syndrome/therapy , Calcifediol , Vitamins/therapeutic use
18.
J Clin Med ; 11(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160057

ABSTRACT

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) profoundly impacts hemostasis and microvasculature. In the light of the dilemma between thromboembolic and hemorrhagic complications, in the present paper, we systematically investigate the prevalence, mortality, radiological subtypes, and clinical characteristics of intracranial hemorrhage (ICH) in coronavirus disease (COVID-19) patients. METHODS: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we performed a systematic review of the literature by screening the PubMed database and included patients diagnosed with COVID-19 and concomitant ICH. We performed a pooled analysis, including a prospectively collected cohort of critically ill COVID-19 patients with ICH, as part of the PANDEMIC registry (Pooled Analysis of Neurologic Disorders Manifesting in Intensive Care of COVID-19). RESULTS: Our literature review revealed a total of 217 citations. After the selection process, 79 studies and a total of 477 patients were included. The median age was 58.8 years. A total of 23.3% of patients experienced the critical stage of COVID-19, 62.7% of patients were on anticoagulation and 27.5% of the patients received ECMO. The prevalence of ICH was at 0.85% and the mortality at 52.18%, respectively. CONCLUSION: ICH in COVID-19 patients is rare, but it has a very poor prognosis. Different subtypes of ICH seen in COVID-19, support the assumption of heterogeneous and multifaceted pathomechanisms contributing to ICH in COVID-19. Further clinical and pathophysiological investigations are warranted to resolve the conflict between thromboembolic and hemorrhagic complications in the future.

19.
Nutrients ; 13(6)2021 Jun 20.
Article in English | MEDLINE | ID: mdl-34203015

ABSTRACT

The interplay between inflammation and oxidative stress is a vicious circle, potentially resulting in organ damage. Essential micronutrients such as selenium (Se) and zinc (Zn) support anti-oxidative defense systems and are commonly depleted in severe disease. This single-center retrospective study investigated micronutrient levels under Se and Zn supplementation in critically ill patients with COVID-19 induced acute respiratory distress syndrome (ARDS) and explored potential relationships with immunological and clinical parameters. According to intensive care unit (ICU) standard operating procedures, patients received 1.0 mg of intravenous Se daily on top of artificial nutrition, which contained various amounts of Se and Zn. Micronutrients, inflammatory cytokines, lymphocyte subsets and clinical data were extracted from the patient data management system on admission and after 10 to 14 days of treatment. Forty-six patients were screened for eligibility and 22 patients were included in the study. Twenty-one patients (95%) suffered from severe ARDS and 14 patients (64%) survived to ICU discharge. On admission, the majority of patients had low Se status biomarkers and Zn levels, along with elevated inflammatory parameters. Se supplementation significantly elevated Se (p = 0.027) and selenoprotein P levels (SELENOP; p = 0.016) to normal range. Accordingly, glutathione peroxidase 3 (GPx3) activity increased over time (p = 0.021). Se biomarkers, most notably SELENOP, were inversely correlated with CRP (rs = -0.495), PCT (rs = -0.413), IL-6 (rs = -0.429), IL-1ß (rs = -0.440) and IL-10 (rs = -0.461). Positive associations were found for CD8+ T cells (rs = 0.636), NK cells (rs = 0.772), total IgG (rs = 0.493) and PaO2/FiO2 ratios (rs = 0.504). In addition, survivors tended to have higher Se levels after 10 to 14 days compared to non-survivors (p = 0.075). Sufficient Se and Zn levels may potentially be of clinical significance for an adequate immune response in critically ill patients with severe COVID-19 ARDS.


Subject(s)
COVID-19 Drug Treatment , Critical Illness/therapy , Deficiency Diseases/drug therapy , Dietary Supplements , Micronutrients/therapeutic use , Selenium/therapeutic use , Zinc/therapeutic use , Aged , C-Reactive Protein/metabolism , COVID-19/blood , COVID-19/immunology , Deficiency Diseases/complications , Humans , Immune System/drug effects , Inflammation/blood , Inflammation/drug therapy , Intensive Care Units , Interleukins/blood , Male , Micronutrients/blood , Micronutrients/deficiency , Middle Aged , Oxygen/metabolism , Respiratory Distress Syndrome/drug therapy , Retrospective Studies , SARS-CoV-2 , Selenium/blood , Selenium/deficiency , Selenoprotein P/blood , Severity of Illness Index , Zinc/blood , Zinc/deficiency
20.
Front Immunol ; 11: 581338, 2020.
Article in English | MEDLINE | ID: mdl-33123167

ABSTRACT

Objectives: The severity of Coronavirus Disease 2019 (COVID-19) is largely determined by the immune response. First studies indicate altered lymphocyte counts and function. However, interactions of pro- and anti-inflammatory mechanisms remain elusive. In the current study we characterized the immune responses in patients suffering from severe COVID-19-induced acute respiratory distress syndrome (ARDS). Methods: This was a single-center retrospective study in patients admitted to the intensive care unit (ICU) with confirmed COVID-19 between March 14th and May 28th 2020 (n = 39). Longitudinal data were collected within routine clinical care, including flow-cytometry of lymphocyte subsets, cytokine analysis and growth differentiation factor 15 (GDF-15). Antibody responses against the receptor binding domain (RBD) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike protein were analyzed. Results: All patients suffered from severe ARDS, 30.8% died. Interleukin (IL)-6 was massively elevated at every time-point. The anti-inflammatory cytokine IL-10 was concomitantly upregulated with IL-6. The cellular response was characterized by lymphocytopenia with low counts of CD8+ T cells, natural killer (NK) and naïve T helper cells. CD8+ T and NK cells recovered after 8 to 14 days. The B cell system was largely unimpeded. This coincided with a slight increase in anti-SARS-CoV-2-Spike-RBD immunoglobulin (Ig) G and a decrease in anti-SARS-CoV-2-Spike-RBD IgM. GDF-15 levels were elevated throughout ICU treatment. Conclusions: Massively elevated levels of IL-6 and a delayed cytotoxic immune defense characterized severe COVID-19-induced ARDS. The B cell response and antibody production were largely unimpeded. No obvious imbalance of pro- and anti-inflammatory mechanisms was observed, with elevated GDF-15 levels suggesting increased tissue resilience.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/pathology , Cytokine Release Syndrome/pathology , Pneumonia, Viral/pathology , Severe Acute Respiratory Syndrome/pathology , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 , Coronavirus Infections/immunology , Cytokine Release Syndrome/immunology , Female , Growth Differentiation Factor 15/blood , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Intensive Care Units , Interleukin-10/blood , Interleukin-6/blood , Longitudinal Studies , Lymphopenia , Male , Middle Aged , Pandemics , Pilot Projects , Pneumonia, Viral/immunology , Retrospective Studies , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL