Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36805027

ABSTRACT

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Humans , Carrier Proteins , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
2.
Nature ; 600(7887): 153-157, 2021 12.
Article in English | MEDLINE | ID: mdl-34819673

ABSTRACT

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase (RTK) that regulates important functions in the central nervous system1,2. The ALK gene is a hotspot for chromosomal translocation events that result in several fusion proteins that cause a variety of human malignancies3. Somatic and germline gain-of-function mutations in ALK were identified in paediatric neuroblastoma4-7. ALK is composed of an extracellular region (ECR), a single transmembrane helix and an intracellular tyrosine kinase domain8,9. ALK is activated by the binding of ALKAL1 and ALKAL2 ligands10-14 to its ECR, but the lack of structural information for the ALK-ECR or for ALKAL ligands has limited our understanding of ALK activation. Here we used cryo-electron microscopy, nuclear magnetic resonance and X-ray crystallography to determine the atomic details of human ALK dimerization and activation by ALKAL1 and ALKAL2. Our data reveal a mechanism of RTK activation that allows dimerization by either dimeric (ALKAL2) or monomeric (ALKAL1) ligands. This mechanism is underpinned by an unusual architecture of the receptor-ligand complex. The ALK-ECR undergoes a pronounced ligand-induced rearrangement and adopts an orientation parallel to the membrane surface. This orientation is further stabilized by an interaction between the ligand and the membrane. Our findings highlight the diversity in RTK oligomerization and activation mechanisms.


Subject(s)
Anaplastic Lymphoma Kinase/chemistry , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/ultrastructure , Binding Sites , Cell Membrane/chemistry , Cell Membrane/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Cytokines/chemistry , Cytokines/metabolism , Cytokines/ultrastructure , Enzyme Activation , Humans , Ligands , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Domains , Protein Multimerization
3.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30981631

ABSTRACT

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Nuclear Proteins/genetics , Repetitive Sequences, Amino Acid/genetics , Amyotrophic Lateral Sclerosis/pathology , Arginine/genetics , Cell Nucleolus/chemistry , Cell Nucleolus/genetics , Dipeptides/genetics , Humans , Nucleophosmin , Peptides/genetics , Poly A/genetics , RNA, Ribosomal/genetics
4.
Nature ; 573(7775): 590-594, 2019 09.
Article in English | MEDLINE | ID: mdl-31511697

ABSTRACT

The cellular stress response has a vital role in regulating homeostasis by modulating cell survival and death. Stress granules are cytoplasmic compartments that enable cells to survive various stressors. Defects in the assembly and disassembly of stress granules are linked to neurodegenerative diseases, aberrant antiviral responses and cancer1-5. Inflammasomes are multi-protein heteromeric complexes that sense molecular patterns that are associated with damage or intracellular pathogens, and assemble into cytosolic compartments known as ASC specks to facilitate the activation of caspase-1. Activation of inflammasomes induces the secretion of interleukin (IL)-1ß and IL-18 and drives cell fate towards pyroptosis-a form of programmed inflammatory cell death that has major roles in health and disease6-12. Although both stress granules and inflammasomes can be triggered by the sensing of cellular stress, they drive contrasting cell-fate decisions. The crosstalk between stress granules and inflammasomes and how this informs cell fate has not been well-studied. Here we show that the induction of stress granules specifically inhibits NLRP3 inflammasome activation, ASC speck formation and pyroptosis. The stress granule protein DDX3X interacts with NLRP3 to drive inflammasome activation. Assembly of stress granules leads to the sequestration of DDX3X, and thereby the inhibition of NLRP3 inflammasome activation. Stress granules and the NLRP3 inflammasome compete for DDX3X molecules to coordinate the activation of innate responses and subsequent cell-fate decisions under stress conditions. Induction of stress granules or loss of DDX3X in the myeloid compartment leads to a decrease in the production of inflammasome-dependent cytokines in vivo. Our findings suggest that macrophages use the availability of DDX3X to interpret stress signals and choose between pro-survival stress granules and pyroptotic ASC specks. Together, our data demonstrate the role of DDX3X in driving NLRP3 inflammasome and stress granule assembly, and suggest a rheostat-like mechanistic paradigm for regulating live-or-die cell-fate decisions under stress conditions.


Subject(s)
Cell Death/genetics , DEAD-box RNA Helicases/metabolism , Inflammasomes/genetics , Macrophages/cytology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stress, Physiological/genetics , Animals , Cell Line , Cell Survival/genetics , DEAD-box RNA Helicases/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , HEK293 Cells , Humans , Inflammasomes/immunology , Macrophages/immunology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
5.
Mol Cell ; 61(4): 589-601, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26853145

ABSTRACT

Necroptosis is a cell death pathway regulated by the receptor interacting protein kinase 3 (RIPK3) and the mixed lineage kinase domain-like (MLKL) pseudokinase. How MLKL executes plasma membrane rupture upon phosphorylation by RIPK3 remains controversial. Here, we characterize the hierarchical transduction of structural changes in MLKL that culminate in necroptosis. The MLKL brace, proximal to the N-terminal helix bundle (NB), is involved in oligomerization to facilitate plasma membrane targeting through the low-affinity binding of NB to phosphorylated inositol polar head groups of phosphatidylinositol phosphate (PIP) phospholipids. At the membrane, the NB undergoes a "rolling over" mechanism to expose additional higher-affinity PIP-binding sites responsible for robust association to the membrane and displacement of the brace from the NB. PI(4,5)P2 is the preferred PIP-binding partner. We investigate the specific association of MLKL with PIPs and subsequent structural changes during necroptosis.


Subject(s)
Fibroblasts/cytology , Phosphatidylinositol Phosphates/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Apoptosis , Binding Sites , Cell Line , Cell Membrane/metabolism , Fibroblasts/metabolism , Humans , Mice , Models, Molecular , Phosphorylation , Protein Kinases/genetics , Protein Multimerization , Protein Structure, Tertiary , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
6.
Nucleic Acids Res ; 49(5): 2931-2945, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33577679

ABSTRACT

Liquid-liquid phase separation underlies the membrane-less compartmentalization of cells. Intrinsically disordered low-complexity domains (LCDs) often mediate phase separation, but how their phase behavior is modulated by folded domains is incompletely understood. Here, we interrogate the interplay between folded and disordered domains of the RNA-binding protein hnRNPA1. The LCD of hnRNPA1 is sufficient for mediating phase separation in vitro. However, we show that the folded RRM domains and a folded solubility-tag modify the phase behavior, even in the absence of RNA. Notably, the presence of the folded domains reverses the salt dependence of the driving force for phase separation relative to the LCD alone. Small-angle X-ray scattering experiments and coarse-grained MD simulations show that the LCD interacts transiently with the RRMs and/or the solubility-tag in a salt-sensitive manner, providing a mechanistic explanation for the observed salt-dependent phase separation. These data point to two effects from the folded domains: (i) electrostatically-mediated interactions that compact hnRNPA1 and contribute to phase separation and (ii) increased solubility at higher ionic strengths mediated by the folded domains. The interplay between disordered and folded domains can modify the dependence of phase behavior on solution conditions and can obscure signatures of physicochemical interactions underlying phase separation.


Subject(s)
Heterogeneous Nuclear Ribonucleoprotein A1/chemistry , Intrinsically Disordered Proteins/chemistry , Models, Molecular , Protein Domains , Scattering, Small Angle , Sodium Chloride/chemistry , Solubility , X-Ray Diffraction
7.
EMBO J ; 37(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29438978

ABSTRACT

TDP-43 is an RNA-binding protein active in splicing that concentrates into membraneless ribonucleoprotein granules and forms aggregates in amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Although best known for its predominantly disordered C-terminal domain which mediates ALS inclusions, TDP-43 has a globular N-terminal domain (NTD). Here, we show that TDP-43 NTD assembles into head-to-tail linear chains and that phosphomimetic substitution at S48 disrupts TDP-43 polymeric assembly, discourages liquid-liquid phase separation (LLPS) in vitro, fluidizes liquid-liquid phase separated nuclear TDP-43 reporter constructs in cells, and disrupts RNA splicing activity. Finally, we present the solution NMR structure of a head-to-tail NTD dimer comprised of two engineered variants that allow saturation of the native polymerization interface while disrupting higher-order polymerization. These data provide structural detail for the established mechanistic role of the well-folded TDP-43 NTD in splicing and link this function to LLPS. In addition, the fusion-tag solubilized, recombinant form of TDP-43 full-length protein developed here will enable future phase separation and in vitro biochemical assays on TDP-43 function and interactions that have been hampered in the past by TDP-43 aggregation.


Subject(s)
DNA-Binding Proteins/metabolism , Protein Aggregation, Pathological/genetics , Protein Domains/genetics , RNA Splicing/genetics , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Polymerization , Polymers/metabolism , Protein Aggregation, Pathological/pathology
8.
Mol Cell ; 56(2): 246-260, 2014 Oct 23.
Article in English | MEDLINE | ID: mdl-25306923

ABSTRACT

Polyubiquitination by E2 and E3 enzymes is a predominant mechanism regulating protein function. Some RING E3s, including anaphase-promoting complex/cyclosome (APC), catalyze polyubiquitination by sequential reactions with two different E2s. An initiating E2 ligates ubiquitin to an E3-bound substrate. Another E2 grows a polyubiquitin chain on the ubiquitin-primed substrate through poorly defined mechanisms. Here we show that human APC's RING domain is repurposed for dual functions in polyubiquitination. The canonical RING surface activates an initiating E2-ubiquitin intermediate for substrate modification. However, APC engages and activates its specialized ubiquitin chain-elongating E2 UBE2S in ways that differ from current paradigms. During chain assembly, a distinct APC11 RING surface helps deliver a substrate-linked ubiquitin to accept another ubiquitin from UBE2S. Our data define mechanisms of APC/UBE2S-mediated polyubiquitination, reveal diverse functions of RING E3s and E2s, and provide a framework for understanding distinctive RING E3 features specifying ubiquitin chain elongation.


Subject(s)
Apc11 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Apc2 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Peptide Biosynthesis, Nucleic Acid-Independent , Polyubiquitin/biosynthesis , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitination/physiology , Amino Acid Sequence , Apc4 Subunit, Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Checkpoints , HeLa Cells , Humans , Molecular Sequence Data , Polyubiquitin/genetics , Protein Structure, Tertiary
9.
EMBO J ; 35(12): 1254-75, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27220849

ABSTRACT

Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3(SPOP) ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.


Subject(s)
Cell Nucleus/metabolism , Macromolecular Substances/metabolism , Nuclear Proteins/metabolism , Protein Multimerization , Repressor Proteins/metabolism , Humans , Kruppel-Like Transcription Factors/metabolism , Nerve Tissue Proteins/metabolism , Protein Binding , Protein Domains , Ubiquitination , Zinc Finger Protein Gli3
10.
Mol Cell ; 44(3): 451-61, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22055190

ABSTRACT

Atg7 is a noncanonical, homodimeric E1 enzyme that interacts with the noncanonical E2 enzyme, Atg3, to mediate conjugation of the ubiquitin-like protein (UBL) Atg8 during autophagy. Here we report that the unique N-terminal domain of Atg7 (Atg7(NTD)) recruits a unique "flexible region" from Atg3 (Atg3(FR)). The structure of an Atg7(NTD)-Atg3(FR) complex reveals hydrophobic residues from Atg3 engaging a conserved groove in Atg7, important for Atg8 conjugation. We also report the structure of the homodimeric Atg7 C-terminal domain, which is homologous to canonical E1s and bacterial antecedents. The structures, SAXS, and crosslinking data allow modeling of a full-length, dimeric (Atg7~Atg8-Atg3)(2) complex. The model and biochemical data provide a rationale for Atg7 dimerization: Atg8 is transferred in trans from the catalytic cysteine of one Atg7 protomer to Atg3 bound to the N-terminal domain of the opposite Atg7 protomer within the homodimer. The studies reveal a distinctive E1~UBL-E2 architecture for enzymes mediating autophagy.


Subject(s)
Autophagy , Carrier Proteins/chemistry , Fibroblasts/enzymology , Microtubule-Associated Proteins/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Amino Acid Sequence , Animals , Autophagy-Related Protein 7 , Autophagy-Related Protein 8 Family , Autophagy-Related Proteins , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Crystallography, X-Ray , Fibroblasts/pathology , Hydrophobic and Hydrophilic Interactions , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Multienzyme Complexes , Mutation , Protein Conformation , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship , Transfection , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
11.
Proc Natl Acad Sci U S A ; 113(12): 3275-80, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26951671

ABSTRACT

The UvsY recombination mediator protein is critical for efficient homologous recombination in bacteriophage T4 and is the functional analog of the eukaryotic Rad52 protein. During T4 homologous recombination, the UvsX recombinase has to compete with the prebound gp32 single-stranded binding protein for DNA-binding sites and UvsY stimulates this filament nucleation event. We report here the crystal structure of UvsY in four similar open-barrel heptameric assemblies and provide structural and biophysical insights into its function. The UvsY heptamer was confirmed in solution by centrifugation and light scattering, and thermodynamic analyses revealed that the UvsY-ssDNA interaction occurs within the assembly via two distinct binding modes. Using surface plasmon resonance, we also examined the binding of UvsY to both ssDNA and the ssDNA-gp32 complex. These analyses confirmed that ssDNA can bind UvsY and gp32 independently and also as a ternary complex. They also showed that residues located on the rim of the heptamer are required for optimal binding to ssDNA, thus identifying the putative ssDNA-binding surface. We propose a model in which UvsY promotes a helical ssDNA conformation that disfavors the binding of gp32 and initiates the assembly of the ssDNA-UvsX filament.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/physiology , Viral Proteins/chemistry , Viral Proteins/physiology , Amino Acid Sequence , Models, Molecular , Molecular Sequence Data , Protein Conformation , Structure-Activity Relationship
12.
J Biol Chem ; 291(12): 6292-303, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26774272

ABSTRACT

Fatty acid kinase (Fak) is a ubiquitous Gram-positive bacterial enzyme consisting of an ATP-binding protein (FakA) that phosphorylates the fatty acid bound to FakB. In Staphylococcus aureus, Fak is a global regulator of virulence factor transcription and is essential for the activation of exogenous fatty acids for incorporation into phospholipids. The 1.2-Å x-ray structure of S. aureus FakB2, activity assays, solution studies, site-directed mutagenesis, and in vivo complementation were used to define the functions of the five conserved residues that define the FakB protein family (Pfam02645). The fatty acid tail is buried within the protein, and the exposed carboxyl group is bound by a Ser-93-fatty acid carboxyl-Thr-61-His-266 hydrogen bond network. The guanidinium of the invariant Arg-170 is positioned to potentially interact with a bound acylphosphate. The reduced thermal denaturation temperatures of the T61A, S93A, and H266A FakB2 mutants illustrate the importance of the hydrogen bond network in protein stability. The FakB2 T61A, S93A, and H266A mutants are 1000-fold less active in the Fak assay, and the R170A mutant is completely inactive. All FakB2 mutants form FakA(FakB2)2 complexes except FakB2(R202A), which is deficient in FakA binding. Allelic replacement shows that strains expressing FakB2 mutants are defective in fatty acid incorporation into phospholipids and virulence gene transcription. These conserved residues are likely to perform the same critical functions in all bacterial fatty acid-binding proteins.


Subject(s)
Bacterial Proteins/chemistry , Fatty Acid-Binding Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Conserved Sequence , Fatty Acid-Binding Proteins/metabolism , Fatty Acids/chemistry , Gene Expression , Hydrogen Bonding , Models, Molecular , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Stability , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism
13.
Mol Cell ; 36(1): 39-50, 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19818708

ABSTRACT

In the largest E3 ligase subfamily, Cul3 binds a BTB domain, and an associated protein-interaction domain such as MATH recruits substrates for ubiquitination. Here, we present biochemical and structural analyses of the MATH-BTB protein, SPOP. We define a SPOP-binding consensus (SBC) and determine structures revealing recognition of SBCs from the phosphatase Puc, the transcriptional regulator Ci, and the chromatin component MacroH2A. We identify a dimeric SPOP-Cul3 assembly involving a conserved helical structure C-terminal of BTB domains, which we call "3-box" due to its facilitating Cul3 binding and its resemblance to F-/SOCS-boxes in other cullin-based E3s. Structural flexibility between the substrate-binding MATH and Cul3-binding BTB/3-box domains potentially allows a SPOP dimer to engage multiple SBCs found within a single substrate, such as Puc. These studies provide a molecular understanding of how MATH-BTB proteins recruit substrates to Cul3 and how their dimerization and conformational variability may facilitate avid interactions with diverse substrates.


Subject(s)
Cullin Proteins/chemistry , Nuclear Proteins/chemistry , Repressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Co-Repressor Proteins , Consensus Sequence/physiology , Crystallography, X-Ray , Cullin Proteins/genetics , Cullin Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Histones/chemistry , Histones/genetics , Histones/metabolism , Humans , Models, Molecular , Molecular Chaperones , Mutation/physiology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphoprotein Phosphatases/chemistry , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Protein Binding/physiology , Protein Interaction Domains and Motifs/physiology , Protein Multimerization/physiology , Protein Structure, Quaternary/physiology , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/physiology
14.
Nucleic Acids Res ; 43(19): 9553-63, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26365238

ABSTRACT

The hexameric Minichromosome Maintenance (MCM) protein complex forms a ring that unwinds DNA at the replication fork in eukaryotes and archaea. Our recent crystal structure of an archaeal MCM N-terminal domain bound to single-stranded DNA (ssDNA) revealed ssDNA associating across tight subunit interfaces but not at the loose interfaces, indicating that DNA-binding is governed not only by the DNA-binding residues of the subunits (MCM ssDNA-binding motif, MSSB) but also by the relative orientation of the subunits. We now extend these findings by showing that DNA-binding by the MCM N-terminal domain of the archaeal organism Pyrococcus furiosus occurs specifically in the hexameric oligomeric form. We show that mutants defective for hexamerization are defective in binding ssDNA despite retaining all the residues observed to interact with ssDNA in the crystal structure. One mutation that exhibits severely defective hexamerization and ssDNA-binding is at a conserved phenylalanine that aligns with the mouse Mcm4(Chaos3) mutation associated with chromosomal instability, cancer, and decreased intersubunit association.


Subject(s)
Archaeal Proteins/chemistry , DNA-Binding Proteins/chemistry , Minichromosome Maintenance Proteins/chemistry , Animals , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Minichromosome Maintenance Complex Component 4/genetics , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Models, Molecular , Mutation , Protein Binding , Protein Multimerization , Pyrococcus furiosus
15.
Proc Natl Acad Sci U S A ; 111(12): 4466-71, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24616519

ABSTRACT

Nucleophosmin (NPM1) is a multifunctional phospho-protein with critical roles in ribosome biogenesis, tumor suppression, and nucleolar stress response. Here we show that the N-terminal oligomerization domain of NPM1 (Npm-N) exhibits structural polymorphism by populating conformational states ranging from a highly ordered, folded pentamer to a highly disordered monomer. The monomer-pentamer equilibrium is modulated by posttranslational modification and protein binding. Phosphorylation drives the equilibrium in favor of monomeric forms, and this effect can be reversed by Npm-N binding to its interaction partners. We have identified a short, arginine-rich linear motif in NPM1 binding partners that mediates Npm-N oligomerization. We propose that the diverse functional repertoire associated with NPM1 is controlled through a regulated unfolding mechanism signaled through posttranslational modifications and intermolecular interactions.


Subject(s)
Biopolymers/chemistry , Nuclear Proteins/chemistry , Amino Acid Sequence , Biopolymers/metabolism , Chromatography, Gel , Humans , Models, Molecular , Molecular Sequence Data , Native Polyacrylamide Gel Electrophoresis , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/metabolism , Nucleophosmin , Phosphorylation , Protein Binding , Protein Conformation
16.
Biochemistry ; 55(9): 1332-45, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26866573

ABSTRACT

Proline-rich tyrosine kinase 2 (Pyk2) is a nonreceptor tyrosine kinase and belongs to the focal adhesion kinase (FAK) family. Like FAK, the C-terminal focal adhesion-targeting (FAT) domain of Pyk2 binds to paxillin, a scaffold protein in focal adhesions; however, the interaction between the FAT domain of Pyk2 and paxillin is dynamic and unstable. Leupaxin is another member in the paxillin family and was suggested to be the native binding partner of Pyk2; Pyk2 gene expression is strongly correlated with that of leupaxin in many tissues including primary breast cancer. Here, we report that leupaxin interacts with Pyk2-FAT. Leupaxin has four leucine-aspartate (LD) motifs. The first and third LD motifs of leupaxin preferably target the two LD-binding sites on the Pyk2-FAT domain, respectively. Moreover, the full-length leupaxin binds to Pyk2-FAT as a stable one-to-one complex. Together, we propose that there is an underlying selectivity between leupaxin and paxillin for Pyk2, which may influence the differing behavior of the two proteins at focal adhesion sites.


Subject(s)
Aspartic Acid/chemistry , Cell Adhesion Molecules/chemistry , Focal Adhesion Kinase 2/chemistry , Focal Adhesions/chemistry , Leucine/chemistry , Phosphoproteins/chemistry , Aspartic Acid/metabolism , Cell Adhesion Molecules/metabolism , Crystallization , Focal Adhesion Kinase 2/metabolism , Focal Adhesions/metabolism , Humans , Leucine/metabolism , Phosphoproteins/metabolism , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary/physiology
17.
Nat Chem Biol ; 9(3): 163-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23340338

ABSTRACT

Following DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the antiapoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique among BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules BAX and BAK. Structural investigations using NMR spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL. Wild-type PUMA or a PUMA mutant incapable of causing binding-induced unfolding of BCL-xL equivalently inhibited the antiapoptotic BCL-2 repertoire to sensitize for death receptor-activated apoptosis, but only wild-type PUMA promoted p53-dependent, DNA damage-induced apoptosis. Our data suggest that PUMA-induced partial unfolding of BCL-xL disrupts interactions between cytosolic p53 and BCL-xL, releasing the bound p53 to initiate apoptosis. We propose that regulated unfolding of BCL-xL provides a mechanism to promote PUMA-dependent signaling within the apoptotic pathways.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Apoptosis , Protein Unfolding , Proto-Oncogene Proteins/metabolism , Tumor Suppressor Protein p53/metabolism , bcl-X Protein/metabolism , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Humans , Models, Molecular , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/chemistry , bcl-X Protein/chemistry
18.
EMBO J ; 28(13): 1953-64, 2009 Jul 08.
Article in English | MEDLINE | ID: mdl-19494832

ABSTRACT

The 39-kDa Escherichia coli enzyme MccB catalyses a remarkable posttranslational modification of the MccA heptapeptide during the biosynthesis of microcin C7 (MccC7), a 'Trojan horse' antibiotic. The approximately 260-residue C-terminal region of MccB is homologous to ubiquitin-like protein (UBL) activating enzyme (E1) adenylation domains. Accordingly, MccB-catalysed C-terminal MccA-acyl-adenylation is reminiscent of the E1-catalysed activation reaction. However, unlike E1 substrates, which are UBLs with a C-terminal di-glycine sequence, MccB's substrate, MccA, is a short peptide with an essential C-terminal Asn. Furthermore, after an intramolecular rearrangement of MccA-acyl-adenylate, MccB catalyses a second, unique reaction, producing a stable phosphoramidate-linked analogue of acyl-adenylated aspartic acid. We report six-crystal structures of MccB in apo, substrate-, intermediate-, and inhibitor-bound forms. Structural and kinetic analyses reveal a novel-peptide clamping mechanism for MccB binding to heptapeptide substrates and a dynamic-active site for catalysing dual adenosine triphosphate-consuming reactions. The results provide insight into how a distinctive member of the E1 superfamily carries out two-step activation for generating the peptidyl-antibiotic MccC7.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Ligases/chemistry , Ligases/metabolism , Peptides/chemistry , Peptides/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/biosynthesis , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Bacteriocins/biosynthesis , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Humans , Ligases/genetics , Models, Molecular , Molecular Sequence Data , Mutation , Nucleotides/chemistry , Nucleotides/metabolism , Protein Binding , Protein Conformation , Protein Processing, Post-Translational , Sequence Alignment , Ubiquitin-Activating Enzymes/genetics
19.
Sci Rep ; 12(1): 7820, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35551201

ABSTRACT

Ozz, a member of the SOCS-box family of proteins, is the substrate-binding component of CRL5Ozz, a muscle-specific Cullin-RING ubiquitin ligase complex composed of Elongin B/C, Cullin 5 and Rbx1. CRL5Ozz targets for proteasomal degradation selected pools of substrates, including sarcolemma-associated ß-catenin, sarcomeric MyHCemb and Alix/PDCD6IP, which all interact with the actin cytoskeleton. Ubiquitination and degradation of these substrates are required for the remodeling of the contractile sarcomeric apparatus. However, how CRL5Ozz assembles into an active E3 complex and interacts with its substrates remain unexplored. Here, we applied a baculovirus-based expression system to produce large quantities of two subcomplexes, Ozz-EloBC and Cul5-Rbx1. We show that these subcomplexes mixed in a 1:1 ratio reconstitutes a five-components CRL5Ozz monomer and dimer, but that the reconstituted complex interacts with its substrates only as monomer. The in vitro assembled CRL5Ozz complex maintains the capacity to polyubiquitinate each of its substrates, indicating that the protein production method used in these studies is well-suited to generate large amounts of a functional CRL5Ozz. Our findings highlight a mode of assembly of the CRL5Ozz that differs in presence or absence of its cognate substrates and grant further structural studies.


Subject(s)
Cullin Proteins , Ubiquitin-Protein Ligases , Cullin Proteins/genetics , Protein Binding , Sarcomeres/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitins/metabolism
20.
J Mol Biol ; 433(18): 167120, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34197833

ABSTRACT

Proteins that exhibit intrinsically disordered regions (IDRs) are prevalent in the human proteome and perform diverse biological functions, including signaling and regulation. Due to these important roles, misregulation of intrinsically disordered proteins (IDPs) is associated with myriad human diseases, including neurodegeneration and cancer. The inherent flexibility of IDPs limits the applicability of the traditional structure-based drug design paradigm; therefore, IDPs have long been considered "undruggable". Using NMR spectroscopy and other methods, we previously discovered small, drug-like molecules that bind specifically, albeit weakly, to dynamic clusters of aromatic residues within p27Kip1 (p27), an archetypal disordered protein involved in cell cycle regulation. Here, using synthetic chemistry, NMR spectroscopy and other biophysical methods, we discovered elaborated analogs of our previously reported molecules with 30-fold increased affinity for p27 (apparent Kd = 57 ± 19 µM). Strikingly, using analytical ultracentrifugation methods, we showed that the highest affinity compounds caused p27 to form soluble, disordered oligomers. Based on these observations, we propose that sequestration within soluble oligomers may represent a general strategy for therapeutically targeting disease-associated IDPs in the future.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p27/chemistry , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Drug Design , Drug Discovery , Intrinsically Disordered Proteins/metabolism , Small Molecule Libraries/metabolism , Humans , Intrinsically Disordered Proteins/chemistry , Protein Binding , Small Molecule Libraries/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL