Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Publication year range
1.
Immunity ; 51(3): 508-521.e6, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31471109

ABSTRACT

Recent experimental data and clinical, genetic, and transcriptome evidence from patients converge to suggest a key role of interleukin-1ß (IL-1ß) in the pathogenesis of Kawasaki disease (KD). However, the molecular mechanisms involved in the development of cardiovascular lesions during KD vasculitis are still unknown. Here, we investigated intestinal barrier function in KD vasculitis and observed evidence of intestinal permeability and elevated circulating secretory immunoglobulin A (sIgA) in KD patients, as well as elevated sIgA and IgA deposition in vascular tissues in a mouse model of KD vasculitis. Targeting intestinal permeability corrected gut permeability, prevented IgA deposition and ameliorated cardiovascular pathology in the mouse model. Using genetic and pharmacologic inhibition of IL-1ß signaling, we demonstrate that IL-1ß lies upstream of disrupted intestinal barrier function, subsequent IgA vasculitis development, and cardiac inflammation. Targeting mucosal barrier dysfunction and the IL-1ß pathway may also be applicable to other IgA-related diseases, including IgA vasculitis and IgA nephropathy.


Subject(s)
Cardiovascular Diseases/immunology , Immunoglobulin A/immunology , Inflammation/immunology , Intestines/immunology , Animals , Disease Models, Animal , Humans , Interleukin-1beta/immunology , Mice , Mice, Inbred C57BL , Mucocutaneous Lymph Node Syndrome/immunology , Permeability , Signal Transduction/immunology , Vasculitis/immunology
2.
Immunity ; 49(5): 873-885.e7, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30366765

ABSTRACT

Receptor interacting protein 2 (RIP2) plays a role in sensing intracellular pathogens, but its function in T cells is unclear. We show that RIP2 deficiency in CD4+ T cells resulted in chronic and severe interleukin-17A-mediated inflammation during Chlamydia pneumoniae lung infection, increased T helper 17 (Th17) cell formation in lungs of infected mice, accelerated atherosclerosis, and more severe experimental autoimmune encephalomyelitis. While RIP2 deficiency resulted in reduced conventional Th17 cell differentiation, it led to significantly enhanced differentiation of pathogenic (p)Th17 cells, which was dependent on RORα transcription factor and interleukin-1 but independent of nucleotide oligomerization domain (NOD) 1 and 2. Overexpression of RIP2 resulted in suppression of pTh17 cell differentiation, an effect mediated by its CARD domain, and phenocopied by a cell-permeable RIP2 CARD peptide. Our data suggest that RIP2 has a T cell-intrinsic role in determining the balance between homeostatic and pathogenic Th17 cell responses.


Subject(s)
Cell Differentiation/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Th17 Cells/cytology , Th17 Cells/metabolism , Animals , Atherosclerosis , Biomarkers , Caspase Activation and Recruitment Domain , Encephalomyelitis, Autoimmune, Experimental/etiology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/mortality , Gene Expression , Immunophenotyping , Inflammation/genetics , Inflammation/metabolism , Interleukin-17/biosynthesis , Interleukin-1beta , Mice , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Arterioscler Thromb Vasc Biol ; 44(4): e117-e130, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38385289

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is an acute febrile illness and systemic vasculitis often associated with cardiac sequelae, including arrhythmias. Abundant evidence indicates a central role for IL (interleukin)-1 and TNFα (tumor necrosis factor-alpha) signaling in the formation of arterial lesions in KD. We aimed to investigate the mechanisms underlying the development of electrophysiological abnormalities in a murine model of KD vasculitis. METHODS: Lactobacillus casei cell wall extract-induced KD vasculitis model was used to investigate the therapeutic efficacy of clinically relevant IL-1Ra (IL-1 receptor antagonist) and TNFα neutralization. Echocardiography, in vivo electrophysiology, whole-heart optical mapping, and imaging were performed. RESULTS: KD vasculitis was associated with impaired ejection fraction, increased ventricular tachycardia, prolonged repolarization, and slowed conduction velocity. Since our transcriptomic analysis of human patients showed elevated levels of both IL-1ß and TNFα, we asked whether either cytokine was linked to the development of myocardial dysfunction. Remarkably, only inhibition of IL-1 signaling by IL-1Ra but not TNFα neutralization was able to prevent changes in ejection fraction and arrhythmias, whereas both IL-1Ra and TNFα neutralization significantly improved vasculitis and heart vessel inflammation. The treatment of L casei cell wall extract-injected mice with IL-1Ra also restored conduction velocity and improved the organization of Cx43 (connexin 43) at the intercalated disk. In contrast, in mice with gain of function of the IL-1 signaling pathway, L casei cell wall extract induced spontaneous ventricular tachycardia and premature deaths. CONCLUSIONS: Our results characterize the electrophysiological abnormalities associated with L casei cell wall extract-induced KD and show that IL-1Ra is more effective in preventing KD-induced myocardial dysfunction and arrhythmias than anti-TNFα therapy. These findings support the advancement of clinical trials using IL-1Ra in patients with KD.


Subject(s)
Cardiomyopathies , Mucocutaneous Lymph Node Syndrome , Tachycardia, Ventricular , Vasculitis , Humans , Animals , Mice , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/drug therapy , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Tumor Necrosis Factor-alpha , Disease Models, Animal , Interleukin-1beta/metabolism , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/prevention & control , Tachycardia, Ventricular/prevention & control , Tachycardia, Ventricular/complications
4.
Immunity ; 43(2): 289-303, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26231118

ABSTRACT

Commensal microbiota promote mucosal tolerance in part by engaging regulatory T (Treg) cells via Toll-like receptors (TLRs). We report that Treg-cell-specific deletion of the TLR adaptor MyD88 resulted in deficiency of intestinal Treg cells, a reciprocal increase in T helper 17 (Th17) cells and heightened interleukin-17 (IL-17)-dependent inflammation in experimental colitis. It also precipitated dysbiosis with overgrowth of segmented filamentous bacteria (SFB) and increased microbial loads in deep tissues. The Th17 cell dysregulation and bacterial dysbiosis were linked to impaired anti-microbial intestinal IgA responses, related to defective MyD88 adaptor- and Stat3 transcription factor-dependent T follicular regulatory and helper cell differentiation in the Peyer's patches. These findings establish an essential role for MyD88-dependent microbial sensing by Treg cells in enforcing mucosal tolerance and maintaining commensalism by promoting intestinal Treg cell formation and anti-commensal IgA responses.


Subject(s)
Colitis/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Intestines/immunology , Myeloid Differentiation Factor 88/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Antibodies, Bacterial/metabolism , Cell Differentiation , Cells, Cultured , Immune Tolerance , Immunity, Mucosal , Immunoglobulin A/metabolism , Intestines/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Myeloid Differentiation Factor 88/genetics , STAT3 Transcription Factor/metabolism , Symbiosis/immunology , Toll-Like Receptors/metabolism
5.
Immunity ; 42(3): 512-23, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25769611

ABSTRACT

Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible (Il4ra(F709)) mice with enhanced interleukin-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of a T helper 2 (Th2)-cell-like phenotype, also found in peripheral-blood allergen-specific Treg cells of food-allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg-cell-lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Th2 cell reprogramming of Treg cells. Interruption of Th2 cell reprogramming of Treg cells might thus provide candidate therapeutic strategies in food allergy.


Subject(s)
Food Hypersensitivity/immunology , Genetic Predisposition to Disease , Immunity, Mucosal , Receptors, Cell Surface/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Adolescent , Allergens/immunology , Animals , Cellular Reprogramming/immunology , Child , Child, Preschool , Female , Food Hypersensitivity/genetics , Food Hypersensitivity/pathology , Gastric Mucosa/immunology , Gastric Mucosa/pathology , Gene Expression Regulation , Humans , Immune Tolerance , Infant , Interleukin-13/deficiency , Interleukin-13/genetics , Interleukin-13/immunology , Interleukin-4/deficiency , Interleukin-4/genetics , Interleukin-4/immunology , Male , Mast Cells/immunology , Mast Cells/pathology , Mice , Mice, Transgenic , Receptors, Cell Surface/genetics , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/immunology , Signal Transduction , T-Lymphocytes, Regulatory/pathology , Th2 Cells/pathology , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/immunology
6.
Immunity ; 41(1): 141-51, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-25017467

ABSTRACT

Immunoglobulin E (IgE) antibodies are known for triggering immediate hypersensitivity reactions such as food anaphylaxis. In this study, we tested whether they might additionally function to amplify nascent antibody and T helper 2 (Th2) cell-mediated responses to ingested proteins and whether blocking IgE would modify sensitization. By using mice harboring a disinhibited form of the IL-4 receptor, we developed an adjuvant-free model of peanut allergy. Mast cells and IgE were required for induction of antibody and Th2-cell-mediated responses to peanut ingestion and they impaired regulatory T (Treg) cell induction. Mast-cell-targeted genetic deletion of the FcεRI signaling kinase Syk or Syk blockade also prevented peanut sensitization. In mice with established allergy, Syk blockade facilitated desensitization and induction of Treg cells, which suppressed allergy when transferred to naive recipients. Our study suggests a key role for IgE in driving Th2 cell and IgE responses while suppressing Treg cells in food allergy.


Subject(s)
Immunoglobulin E/immunology , Peanut Hypersensitivity/immunology , Receptors, IgE/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Allergens/immunology , Animals , Desensitization, Immunologic , Disease Models, Animal , Immunoglobulin E/genetics , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Lymphocyte Activation/immunology , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Peanut Hypersensitivity/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Receptors, IgE/antagonists & inhibitors , Receptors, IgE/genetics , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/immunology , Signal Transduction/immunology , Syk Kinase
8.
Proc Natl Acad Sci U S A ; 117(41): 25254-25262, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989130

ABSTRACT

Multisystem Inflammatory Syndrome in Children (MIS-C) associated with COVID-19 is a newly recognized condition in children with recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. These children and adult patients with severe hyperinflammation present with a constellation of symptoms that strongly resemble toxic shock syndrome, an escalation of the cytotoxic adaptive immune response triggered upon the binding of pathogenic superantigens to T cell receptors (TCRs) and/or major histocompatibility complex class II (MHCII) molecules. Here, using structure-based computational models, we demonstrate that the SARS-CoV-2 spike (S) glycoprotein exhibits a high-affinity motif for binding TCRs, and may form a ternary complex with MHCII. The binding epitope on S harbors a sequence motif unique to SARS-CoV-2 (not present in other SARS-related coronaviruses), which is highly similar in both sequence and structure to the bacterial superantigen staphylococcal enterotoxin B. This interaction between the virus and human T cells could be strengthened by a rare mutation (D839Y/N/E) from a European strain of SARS-CoV-2. Furthermore, the interfacial region includes selected residues from an intercellular adhesion molecule (ICAM)-like motif shared between the SARS viruses from the 2003 and 2019 pandemics. A neurotoxin-like sequence motif on the receptor-binding domain also exhibits a high tendency to bind TCRs. Analysis of the TCR repertoire in adult COVID-19 patients demonstrates that those with severe hyperinflammatory disease exhibit TCR skewing consistent with superantigen activation. These data suggest that SARS-CoV-2 S may act as a superantigen to trigger the development of MIS-C as well as cytokine storm in adult COVID-19 patients, with important implications for the development of therapeutic approaches.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Receptors, Antigen, T-Cell/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Superantigens/metabolism , Systemic Inflammatory Response Syndrome/immunology , Amino Acid Motifs , Betacoronavirus/chemistry , Betacoronavirus/genetics , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Enterotoxins/chemistry , Epitopes, T-Lymphocyte , Humans , Intercellular Adhesion Molecule-1/chemistry , Models, Molecular , Mutation , Neurotoxins/chemistry , Pandemics , Pneumonia, Viral/genetics , Pneumonia, Viral/pathology , Protein Binding , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Superantigens/chemistry , Superantigens/genetics , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology
9.
Arterioscler Thromb Vasc Biol ; 40(3): 802-818, 2020 03.
Article in English | MEDLINE | ID: mdl-31996019

ABSTRACT

OBJECTIVE: Kawasaki disease (KD) is the leading cause of acute vasculitis and acquired heart disease in children in developed countries. Notably, KD is more prevalent in males than females. We previously established a key role for IL (interleukin)-1 signaling in KD pathogenesis, but whether this pathway underlies the sex-based difference in susceptibility is unknown. Approach and Results: The role of IL-1 signaling was investigated in the Lactobacillus casei cell wall extract-induced experimental mouse model of KD vasculitis. Five-week-old male and female mice were injected intraperitoneally with PBS, Lactobacillus caseicell wall extract, or a combination of Lactobacillus caseicell wall extract and the IL-1 receptor antagonist Anakinra. Aortitis, coronary arteritis inflammation score and abdominal aorta dilatation, and aneurysm development were assessed. mRNA-seq (messenger RNA sequencing) analysis was performed on abdominal aorta tissue. Publicly available human transcriptomics data from patients with KD was analyzed to identify sex differences and disease-associated genes. Male mice displayed enhanced aortitis and coronary arteritis as well as increased incidence and severity of abdominal aorta dilatation and aneurysm, recapitulating the increased incidence in males that is observed in human KD. Gene expression data from patients with KD and abdominal aorta tissue of Lactobacillus caseicell wall extract-injected mice showed enhanced Il1b expression and IL-1 signaling genes in males. Although the more severe IL-1ß-mediated disease phenotype observed in male mice was ameliorated by Anakinra treatment, the milder disease phenotype in female mice failed to respond. CONCLUSIONS: IL-1ß may play a central role in mediating sex-based differences in KD, with important implications for the use of anti-IL-1ß therapies to treat male and female patients with KD.


Subject(s)
Aorta, Abdominal/metabolism , Interleukin-1beta/metabolism , Mucocutaneous Lymph Node Syndrome/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Aorta, Abdominal/immunology , Case-Control Studies , Disease Models, Animal , Drug Resistance , Female , Health Status Disparities , Humans , Incidence , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1beta/genetics , Lacticaseibacillus casei , Male , Mice, Inbred C57BL , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/microbiology , Risk Factors , Severity of Illness Index , Sex Factors , Signal Transduction
10.
Curr Rheumatol Rep ; 22(2): 6, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32020498

ABSTRACT

PURPOSE OF THE REVIEW: Kawasaki disease (KD) is a childhood systemic vasculitis of unknown etiology that causes coronary artery aneurysms (CAA), and if left undiagnosed can result in long-term cardiovascular complications and adult cardiac disease. Up to 20% of KD children fail to respond to IVIG, the mainstay of therapy, highlighting the need for novel therapeutic strategies. Here we review the latest findings in the field regarding specific etiology, genetic associations, and advancements in treatment strategies to prevent coronary aneurysms. RECENT FINDINGS: Recent discoveries using the Lactobacillus casei cell wall extract (LCWE)-induced KD vasculitis mouse model have accelerated the study of KD pathophysiology and have advanced treatment strategies including clinical trials for IL-1R antagonist, Anakinra. KD remains an elusive pediatric vasculitis syndrome and is the leading cause of acquired heart disease among children in the USA and developed countries. Advancements in combination treatment for refractory KD with further understanding of novel genetic risk factors serve as a solid foundation for future research endeavors in the field.


Subject(s)
Coronary Aneurysm/prevention & control , Immunosuppressive Agents/therapeutic use , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Mucocutaneous Lymph Node Syndrome , Myocarditis , Vasculitis , Animals , Anti-Inflammatory Agents/therapeutic use , Antirheumatic Agents/immunology , Antirheumatic Agents/therapeutic use , Coronary Aneurysm/etiology , Disease Models, Animal , Glucocorticoids/therapeutic use , Humans , Immunoglobulins, Intravenous/therapeutic use , Immunosuppressive Agents/immunology , Infliximab/therapeutic use , Interleukin 1 Receptor Antagonist Protein/immunology , Mice , Mucocutaneous Lymph Node Syndrome/diagnosis , Mucocutaneous Lymph Node Syndrome/epidemiology , Mucocutaneous Lymph Node Syndrome/etiology , Mucocutaneous Lymph Node Syndrome/physiopathology , Myocarditis/etiology , Myocarditis/prevention & control , Vasculitis/etiology , Vasculitis/prevention & control
11.
Arterioscler Thromb Vasc Biol ; 36(5): 886-97, 2016 05.
Article in English | MEDLINE | ID: mdl-26941015

ABSTRACT

OBJECTIVE: Kawasaki disease (KD) is the most common cause of acquired cardiac disease in US children. In addition to coronary artery abnormalities and aneurysms, it can be associated with systemic arterial aneurysms. We evaluated the development of systemic arterial dilatation and aneurysms, including abdominal aortic aneurysm (AAA) in the Lactobacillus casei cell-wall extract (LCWE)-induced KD vasculitis mouse model. METHODS AND RESULTS: We discovered that in addition to aortitis, coronary arteritis and myocarditis, the LCWE-induced KD mouse model is also associated with abdominal aorta dilatation and AAA, as well as renal and iliac artery aneurysms. AAA induced in KD mice was exclusively infrarenal, both fusiform and saccular, with intimal proliferation, myofibroblastic proliferation, break in the elastin layer, vascular smooth muscle cell loss, and inflammatory cell accumulation in the media and adventitia. Il1r(-/-), Il1a(-/-), and Il1b(-/-) mice were protected from KD associated AAA. Infiltrating CD11c(+) macrophages produced active caspase-1, and caspase-1 or NLRP3 deficiency inhibited AAA formation. Treatment with interleukin (IL)-1R antagonist (Anakinra), anti-IL-1α, or anti-IL-1ß mAb blocked LCWE-induced AAA formation. CONCLUSIONS: Similar to clinical KD, the LCWE-induced KD vasculitis mouse model can also be accompanied by AAA formation. Both IL-1α and IL-1ß play a key role, and use of an IL-1R blocking agent that inhibits both pathways may be a promising therapeutic target not only for KD coronary arteritis, but also for the other systemic arterial aneurysms including AAA that maybe seen in severe cases of KD. The LCWE-induced vasculitis model may also represent an alternative model for AAA disease.


Subject(s)
Aorta, Abdominal/metabolism , Aortic Aneurysm, Abdominal/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Mucocutaneous Lymph Node Syndrome/complications , Receptors, Interleukin-1 Type I/metabolism , Signal Transduction , Animals , Aorta, Abdominal/drug effects , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Aortic Aneurysm, Abdominal/prevention & control , Aortitis/genetics , Aortitis/metabolism , Aortitis/pathology , Caspase 1/deficiency , Caspase 1/genetics , Cell Proliferation , Cell Wall , Dilatation, Pathologic , Disease Models, Animal , Elastin/metabolism , Female , Gene Expression Profiling , Genotype , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin-1alpha/deficiency , Interleukin-1alpha/genetics , Interleukin-1beta/deficiency , Interleukin-1beta/genetics , Lacticaseibacillus casei , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mucocutaneous Lymph Node Syndrome/chemically induced , Mucocutaneous Lymph Node Syndrome/drug therapy , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/deficiency , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Phenotype , Receptors, Interleukin-1 Type I/deficiency , Receptors, Interleukin-1 Type I/genetics , Signal Transduction/drug effects , Time Factors
12.
J Allergy Clin Immunol ; 138(3): 639-652, 2016 09.
Article in English | MEDLINE | ID: mdl-27596705

ABSTRACT

The pathogenesis of allergic diseases entails an ineffective tolerogenic immune response to allergens. Regulatory T (Treg) cells play a key role in sustaining immune tolerance to allergens, yet mechanisms by which Treg cells fail to maintain tolerance in patients with allergic diseases are not well understood. We review current concepts and established mechanisms regarding how Treg cells regulate different components of allergen-triggered immune responses to promote and maintain tolerance. We will also discuss more recent advances that emphasize the "dual" functionality of Treg cells in patients with allergic diseases: how Treg cells are essential in promoting tolerance to allergens but also how a proallergic inflammatory environment can skew Treg cells toward a pathogenic phenotype that aggravates and perpetuates disease. These advances highlight opportunities for novel therapeutic strategies that aim to re-establish tolerance in patients with chronic allergic diseases by promoting Treg cell stability and function.


Subject(s)
Hypersensitivity/immunology , T-Lymphocytes, Regulatory/immunology , Adaptive Immunity , Animals , Forkhead Transcription Factors/immunology , Humans , Immunity, Innate , Regeneration
13.
J Allergy Clin Immunol ; 138(3): 801-811.e9, 2016 09.
Article in English | MEDLINE | ID: mdl-27177780

ABSTRACT

BACKGROUND: Food allergy is a major health issue, but its pathogenesis remains obscure. Group 2 innate lymphoid cells (ILC2s) promote allergic inflammation. However their role in food allergy is largely unknown. OBJECTIVE: We sought to investigate the role of ILC2s in food allergy. METHODS: Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) were orally sensitized with food allergens, and the ILC2 compartment was analyzed. The requirement for ILC2s in food allergy was investigated by using Il4raF709, IL-33 receptor-deficient (Il1rl1(-/-)), IL-13-deficient (Il13(-/-)), and IL-4-deficient (Il4(-/-)) mice and by adoptive transfer of in vitro-expanded ILC2s. Direct effects of ILC2s on regulatory T (Treg) cells and mast cells were analyzed in coculture experiments. Treg cell control of ILC2s was assessed in vitro and in vivo. RESULTS: Il4raF709 mice with food allergy exhibit increased numbers of ILC2s. IL-4 secretion by ILC2s contributes to the allergic response by reducing allergen-specific Treg cell and activating mast cell counts. IL-33 receptor deficiency in Il4raF709 Il1rl1(-/-) mice protects against allergen sensitization and anaphylaxis while reducing ILC2 induction. Adoptive transfer of wild-type and Il13(-/-) but not Il4(-/-) ILC2s restored sensitization in Il4raF709 Il1rl1(-/-) mice. Treg cells suppress ILC2s in vitro and in vivo. CONCLUSION: IL-4 production by IL-33-stimulated ILC2s blocks the generation of allergen-specific Treg cells and favors food allergy. Strategies to block ILC2 activation or the IL-33/IL-33 receptor pathway can lead to innovative therapies in the treatment of food allergy.


Subject(s)
Food Hypersensitivity/immunology , Interleukin-4/immunology , Lymphocytes/immunology , Mast Cells/immunology , Animals , Cells, Cultured , Coculture Techniques , Immunity, Innate , Interleukin-4/genetics , Mice, Transgenic
15.
Curr Opin Pediatr ; 28(6): 764-771, 2016 12.
Article in English | MEDLINE | ID: mdl-27606957

ABSTRACT

PURPOSE OF REVIEW: Asthma is a complex and heterogeneous disease with strong genetic and environmental components that manifests within a variety of clinical features and diverse patterns of immune responses. Asthma prevalence has dramatically increased over the last decade in Westernized societies, thereby suggesting a key function of environmental factors in disease promotion and development. RECENT FINDINGS: 'Early-life' microbial exposure and bacterial colonization are crucial for the maturation and the education of the immune system. The commensal flora is also critical in order to maintain immune homeostasis at the mucosal surfaces and may consequently play an important function in allergic disease development. Recent evidence demonstrates that asthma influences and is also impacted by the composition and function of the human intestinal and respiratory microbiome. SUMMARY: In this review, we summarize the most recent findings on how asthma development is connected with respiratory and intestinal microbial dysbiosis. We highlight and discuss recent research that reveals the existence of a 'gut-lung' microbial axis and its impact on asthma development. We also analyze how 'early-life' microbial exposure affects the immune response and the consequences for asthma development.


Subject(s)
Asthma/microbiology , Dysbiosis/complications , Intestines/microbiology , Microbiota/immunology , Respiratory System/microbiology , Asthma/immunology , Dysbiosis/immunology , Humans , Intestines/immunology , Respiratory System/immunology , Risk Factors
16.
J Allergy Clin Immunol ; 136(2): 441-53, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25825216

ABSTRACT

BACKGROUND: Traffic-related particulate matter (PM) has been linked to a heightened incidence of asthma and allergic diseases. However, the molecular mechanisms by which PM exposure promotes allergic diseases remain elusive. OBJECTIVE: We sought to determine the expression, function, and regulation of pathways involved in promotion of allergic airway inflammation by PM. METHODS: We used gene expression transcriptional profiling, in vitro culture assays, and in vivo murine models of allergic airway inflammation. RESULTS: We identified components of the Notch pathway, most notably Jagged 1 (Jag1), as targets of PM induction in human monocytes and murine dendritic cells. PM, especially ultrafine particles, upregulated TH cytokine levels, IgE production, and allergic airway inflammation in mice in a Jag1- and Notch-dependent manner, especially in the context of the proasthmatic IL-4 receptor allele Il4raR576. PM-induced Jag1 expression was mediated by the aryl hydrocarbon receptor (AhR), which bound to and activated AhR response elements in the Jag1 promoter. Pharmacologic antagonism of AhR or its lineage-specific deletion in CD11c(+) cells abrogated the augmentation of airway inflammation by PM. CONCLUSION: PM activates an AhR-Jag1-Notch cascade to promote allergic airway inflammation in concert with proasthmatic alleles.


Subject(s)
Allergens/adverse effects , Bronchial Hyperreactivity/genetics , Calcium-Binding Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Particulate Matter/adverse effects , Receptor, Notch1/genetics , Receptors, Aryl Hydrocarbon/genetics , Respiratory Hypersensitivity/genetics , Alleles , Animals , Bronchial Hyperreactivity/chemically induced , Bronchial Hyperreactivity/immunology , Bronchial Hyperreactivity/pathology , CD11c Antigen/genetics , CD11c Antigen/immunology , Calcium-Binding Proteins/immunology , Dendritic Cells/immunology , Dendritic Cells/pathology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Humans , Immunoglobulin E/genetics , Intercellular Signaling Peptides and Proteins/immunology , Jagged-1 Protein , Membrane Proteins/immunology , Mice , Mice, Transgenic , Monocytes/immunology , Monocytes/pathology , Primary Cell Culture , Receptor, Notch1/immunology , Receptors, Aryl Hydrocarbon/immunology , Receptors, Cell Surface/genetics , Receptors, Cell Surface/immunology , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/pathology , Serrate-Jagged Proteins , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology , Vehicle Emissions
17.
J Allergy Clin Immunol ; 134(6): 1310-1317.e6, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25042981

ABSTRACT

BACKGROUND: Food-induced anaphylaxis is triggered by specific IgE antibodies. Paradoxically, some subjects with significant IgE levels can ingest allergenic foods without incident. Similarly, subjects completing oral immunotherapy (OIT) tolerate food challenges despite persistent high-titer food-specific IgE. OBJECTIVE: We sought to test whether IgG antibodies induced by food immunotherapy prevent food-induced anaphylaxis and whether this occurs through the inhibitory receptor FcγRIIb. METHODS: Food allergy-susceptible Il4raF709 mice were enterally sensitized to ovalbumin (OVA). Similarly sensitized IgE-deficient (IgE(-/-)) Il4raF709 mice, which can ingest OVA without anaphylaxis, were subjected to a high-dose enteral OVA desensitization protocol (OIT). Sera from both groups were tested for the ability to activate or inhibit bone marrow mast cells (BMMCs) exposed to allergen or to passively transfer allergy to naive hosts. In parallel experiments sera obtained from patients with peanut allergy before and after undergoing OIT were interrogated for their ability to enhance or suppress peanut-induced activation in an indirect assay by using basophils from nonallergic donors. RESULTS: Il4raF709 mice exhibited strong OVA-specific IgE responses. Their sera efficiently sensitized BMMCs for activation by antigen challenge. Sera from Il4raF709/IgE(-/-) mice subjected to OVA OIT suppressed BMMC responses. This inhibition was IgG mediated and FcγRIIb dependent. Similarly, pre-OIT but not post-OIT sera from patients efficiently sensitized basophils for peanut-induced activation. IgG antibodies in post-OIT sera suppressed basophil activation by pre-OIT sera. This inhibition was blocked by antibodies against FcγRII. CONCLUSION: Food-specific IgG antibodies, such as those induced during OIT, inhibit IgE-mediated reactions. Strategies that favor IgG responses might prove useful in the management of food allergy.


Subject(s)
Desensitization, Immunologic , Hypersensitivity, Immediate/immunology , Hypersensitivity, Immediate/therapy , Immunoglobulin G/immunology , Receptors, IgG/immunology , Administration, Oral , Adolescent , Allergens/immunology , Animals , Basophils/immunology , Child , Female , Food , Humans , Hypersensitivity, Immediate/blood , Immunoglobulin G/blood , Male , Mast Cells/immunology , Mice, Transgenic , Ovalbumin/immunology
18.
J Allergy Clin Immunol ; 131(1): 201-12, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23201093

ABSTRACT

BACKGROUND: Commensal microbiota play a critical role in maintaining oral tolerance. The effect of food allergy on the gut microbial ecology remains unknown. OBJECTIVE: We sought to establish the composition of the gut microbiota in experimental food allergy and its role in disease pathogenesis. METHODS: Food allergy-prone mice with a gain-of-function mutation in the IL-4 receptor α chain (Il4raF709) and wild-type (WT) control animals were subjected to oral sensitization with chicken egg ovalbumin (OVA). Enforced tolerance was achieved by using allergen-specific regulatory T (Treg) cells. Community structure analysis of gut microbiota was performed by using a high-density 16S rDNA oligonucleotide microarrays (PhyloChip) and massively parallel pyrosequencing of 16S rDNA amplicons. RESULTS: OVA-sensitized Il4raF709 mice exhibited a specific microbiota signature characterized by coordinate changes in the abundance of taxa of several bacterial families, including the Lachnospiraceae, Lactobacillaceae, Rikenellaceae, and Porphyromonadaceae. This signature was not shared by similarly sensitized WT mice, which did not exhibit an OVA-induced allergic response. Treatment of OVA-sensitized Il4raF709 mice with OVA-specific Treg cells led to a distinct tolerance-associated signature coincident with the suppression of the allergic response. The microbiota of allergen-sensitized Il4raF709 mice differentially promoted OVA-specific IgE responses and anaphylaxis when reconstituted in WT germ-free mice. CONCLUSION: Mice with food allergy exhibit a specific gut microbiota signature capable of transmitting disease susceptibility and subject to reprogramming by enforced tolerance. Disease-associated microbiota may thus play a pathogenic role in food allergy.


Subject(s)
Food Hypersensitivity/immunology , Food Hypersensitivity/microbiology , Food Microbiology , Metagenome/immunology , Administration, Oral , Allergens/administration & dosage , Allergens/immunology , Anaphylaxis/immunology , Anaphylaxis/microbiology , Animals , Disease Susceptibility/immunology , Female , Food/adverse effects , Food Hypersensitivity/therapy , Immune Tolerance/immunology , Immunotherapy, Adoptive , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Male , Metagenome/genetics , Mice , Mice, Transgenic , Phylogeny , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
19.
Nat Rev Rheumatol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886559

ABSTRACT

Kawasaki disease, a systemic vasculitis that affects young children and can result in coronary artery aneurysms, is the leading cause of acquired heart disease among children. A hallmark of Kawasaki disease is increased blood platelet counts and platelet activation, which is associated with an increased risk of developing resistance to intravenous immunoglobulin and coronary artery aneurysms. Platelets and their releasate, including granules, microparticles, microRNAs and transcription factors, can influence innate immunity, enhance inflammation and contribute to vascular remodelling. Growing evidence indicates that platelets also interact with immune and non-immune cells to regulate inflammation. Platelets boost NLRP3 inflammasome activation and IL-1ß production by human immune cells by releasing soluble mediators. Activated platelets form aggregates with leukocytes, such as monocytes and neutrophils, enhancing numerous functions of these cells and promoting thrombosis and inflammation. Leukocyte-platelet aggregates are increased in children with Kawasaki disease during the acute phase of the disease and can be used as biomarkers for disease severity. Here we review the role of platelets in Kawasaki disease and discuss progress in understanding the immune-effector role of platelets in amplifying inflammation related to Kawasaki disease vasculitis and therapeutic strategies targeting platelets or platelet-derived molecules.

20.
Annu Rev Virol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631806

ABSTRACT

The effects of SARS-CoV-2 infection on children continue to evolve following the onset of the COVID-19 pandemic. Although life-threatening multisystem inflammatory syndrome in children (MIS-C) has become rare, long-standing symptoms stemming from persistent immune activation beyond the resolution of acute SARS-CoV-2 infection contribute to major health sequelae and continue to pose an economic burden. Shared pathophysiologic mechanisms place MIS-C and long COVID within a vast spectrum of postinfectious conditions characterized by intestinal dysbiosis, increased gut permeability, and varying degrees of immune dysregulation. Insights obtained from MIS-C will help shape our understanding of the more indolent and prevalent postacute sequelae of COVID and ultimately guide efforts to improve diagnosis and management of postinfectious complications of SARS-CoV-2 infection in children.

SELECTION OF CITATIONS
SEARCH DETAIL