Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Language
Journal subject
Publication year range
1.
Anim Biotechnol ; 34(6): 1950-1959, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35446746

ABSTRACT

The fibroblast growth factor 10 (FGF10) gene regulates adipogenesis and myogensis. In this study, sequencing of FGF10 prompter region identified three SNPs at loci g.78G > A, g.116C > T and g.201A > T. Each SNP yields three genotypes as GG, GA and AA at loci g.78G > A, CC, CT and TT at loci g.116C > T and AA, AT and TT at loci g.201A > T. Allelic and genotypic frequencies of all three SNPs deviated from the Hardy-Weinberg equilibrium (HWE) (P < 0.05) and were found highly polymorphic as PIC (0.25 < PIC < 0.50). Moreover, we found highest LD (D'/γ2) between SNP2 and SNP3 (0.989/0.909), followed by SNP1 and SNP3 (0.944/0.796). Moreover, three variants of FGF10 gene promoter exhibited significant (P < 0.05) association with body measurement and carcass quality traits in Qinchuan beef cattle. At loci g.78G > A, the genotype GG showed significantly (P < 0.01) larger body length (BL), rump length (RL), chest depth (CD), chest circumference (CC) and ultrasound loin area (ULA). The genotype TC at loci g.116C > T showed significantly (P < 0.01 and 0.05) larger body measurement and intramuscular fat, and ultrasound loin area (ULA). In addition to that, at loci g.201A > T, genotype TT showed significantly (P < 0.01 and P < 0.05) larger body length (BL), rump length (RL), hip width (HW), chest circumference (CC) and ultrasound loin area (ULA). Additionally, screening of promoter sequence of FGF10 gene explored loss of four TFs binding sites (KLF3, ZNF37α, GLIS2 and BCL11A) at g.116C > T because of SNP2. However, a single TF binding site was lost at g.202A > T due to SNP3. Interestingly, none of TF binding site was lost at g.78G > A in SNP1; however, one new TF binding site was gained at this location due to SNP1. These findings conclude that genotype GG, TC and TT could be used as genetic markers of FGF10 gene for body measurement and carcass quality traits in Qinchuan beef cattle.


Subject(s)
Body Weights and Measures , Polymorphism, Single Nucleotide , Cattle/genetics , Animals , Phenotype , Genotype , Polymorphism, Single Nucleotide/genetics , Computational Biology , Gene Frequency , Sequence Analysis, DNA , Meat
2.
Anim Biotechnol ; 33(4): 776-795, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33151113

ABSTRACT

The intramuscular fat content plays a crucial role in meat quality traits. Increasing the degree of adipogenesis in beef cattle leads to an increase in the content of intramuscular fat. Adipogenesis a complex biochemical process which is under firm genetic control. Over the last three decades, the Qinchuan beef cattle have been extensively studied for the improvement of meat production and quality traits. In this study, we reviewed the literature regarding adipogenesis and intramuscular fat deposition. Then, we summarized the research conducted on the transcriptional regulation of key adipogenic marker genes, and also reviewed the roles of adipogenic marker genes in adipogenesis of Qinchuan beef cattle. This review will elaborate our understanding regarding transcriptional regulation which is a vital physiological process regulated by a cascade of transcription factors (TFs), key target marker genes, and regulatory proteins. This synergistic action of TFs and target genes ensures the accurate and diverse transmission of the genetic information for the accomplishment of central physiological processes. This information will provide an insight into the transcriptional regulation of the adipogenic marker genes and its role in bovine adipogenesis for the breed improvement programs especially for the trait of intramuscular fat deposition.


Subject(s)
Adipogenesis , Muscle, Skeletal , Adipogenesis/genetics , Animals , Cattle/genetics , Gene Expression Regulation , Meat , Muscle, Skeletal/metabolism , Transcription Factors/genetics
3.
Electron. j. biotechnol ; 51: 1-7, May. 2021. tab, ilus, graf
Article in English | LILACS | ID: biblio-1343303

ABSTRACT

BACKGROUND: This study aimed to explore genetic polymorphisms of the CCKAR gene and their relationship with the growth and development of Qinchuan cattle which could be used as molecular markers for the improvement of the breeding of Qinchuan cattle. RESULTS: Here, we have identified seven single nucleotide polymorphisms (SNPs) at loci g. 1463 C>G; g. 1532 T>A; g. 1570 G>A; g. 1594 C>A; g. 1640 T>C; g. 1677 G>C; and g. 1735 C>T in the coding region of the bovine CCKAR gene. The frequencies identified on allelic and genotypic characteristics have shown that all seven SNPs diverged from the Hardy-Weinberg-Equilibrium. The SNP2, SNP3, SNP6 and SNP7 had the lowest polymorphism information content values, and remaining SNPs were found to be moderate (0.25 < PIC < 0.50). The genotype CG in SNP1 at loci g.1463 C>G had the greatest association with WH, HW, CD and CCF, while the genotype TA at the very same loci was associated with BFT, ULA and IMF content in Qinchuan cattle. The CCKAR gene expression level in adipose tissue, small intestine, liver and skeleton muscle was found to be higher, whereas, the expression level of mRNA in organs of other digestive system including reticulum, abomasum and omasum was moderate. Some expression of CCKAR mRNA was found in the large intestine, kidney and rumen. CONCLUSIONS: In summary, our finding suggested that the CCKAR gene could be used as a potential candidate for the improvement of carcass quality and body measurements of Qinchuan cattle.


Subject(s)
Animals , Cattle , Cattle/genetics , Receptor, Cholecystokinin A/genetics , Genetic Variation , Linkage Disequilibrium , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Digestive System , Livestock , Genotyping Techniques , Gene Frequency , Meat Products
SELECTION OF CITATIONS
SEARCH DETAIL