ABSTRACT
Aims: The aim was to validate the performance of a monitoring system consisting of a wrist-worn device and a data management cloud service intended to be used by medical professionals in detecting atrial fibrillation (AF). Methods: Thirty adult patients diagnosed with AF alone or AF with concomitant flutter were recruited. Continuous photoplethysmogram (PPG) and intermittent 30 s Lead I electrocardiogram (ECG) recordings were collected over 48 h. The ECG was measured four times a day at prescheduled times, when notified due to irregular rhythm detected by PPG, and when self-initiated based on symptoms. Three-channel Holter ECG was used as the reference. Results: The subjects recorded a total of 1,415 h of continuous PPG data and 3.8 h of intermittent ECG data over the study period. The PPG data were analyzed by the system's algorithm in 5-min segments. The segments containing adequate amounts, at least ~30 s, of adequate quality PPG data for rhythm assessment algorithm, were included. After rejecting 46% of the 5-min segments, the remaining data were compared with annotated Holter ECG yielding AF detection sensitivity and specificity of 95.6 and 99.2%, respectively. The ECG analysis algorithm labeled 10% of the 30-s ECG records as inadequate quality and these were excluded from the analysis. The ECG AF detection sensitivity and specificity were 97.7 and 89.8%, respectively. The usability of the system was found to be good by both the study subjects and the participating cardiologists. Conclusion: The system comprising of a wrist device and a data management service was validated to be suitable for use in patient monitoring and in the detection of AF in an ambulatory setting.Clinical Trial Registration: ClinicalTrials.gov/, NCT05008601.
ABSTRACT
Heart rate (HR) and HR variability (HRV) carry rich information about physical activity, mental and physical load, physiological status, and health of an individual. When combined with activity monitoring and personalized physiological modelling, HR/HRV monitoring may be used for monitoring of complex behaviors and impact of behaviors and external factors on the current physiological status of an individual. Optical HR monitoring (OHR) from wrist provides a comfortable and unobtrusive method for HR/HRV monitoring and is better adhered by users than traditional ECG electrodes or chest straps. However, OHR power consumption is significantly higher than that for ECG based methods due to the measurement principle based on optical illumination of the tissue. We developed an algorithmic approach to reduce power consumption of the OHR in 24/7 HR trending. We use continuous activity monitoring and a fast converging frequency domain algorithm to derive a reliable HR estimate in 7.1s (during outdoor sports, in average) to 10.0s (during daily life). The method allows >80% reduction in power consumption in 24/7 OHR monitoring when average HR monitoring is targeted, without significant reduction in tracking accuracy.