ABSTRACT
Genome sequencing has revolutionized the diagnosis of genetic diseases. Close collaborations between basic scientists and clinical genomicists are now needed to link genetic variants with disease causation. To facilitate such collaborations, we recommend prioritizing clinically relevant genes for functional studies, developing reference variant-phenotype databases, adopting phenotype description standards, and promoting data sharing.
Subject(s)
Biomedical Research , Genomics , Animals , DNA Mutational Analysis , Databases, Genetic , Disease/genetics , Human Genome Project , Humans , Information Dissemination , Models, AnimalABSTRACT
DNA variants that arise after conception can show mosaicism, varying in presence and extent among tissues. Mosaic variants have been reported in Mendelian diseases, but further investigation is necessary to broadly understand their incidence, transmission, and clinical impact. A mosaic pathogenic variant in a disease-related gene may cause an atypical phenotype in terms of severity, clinical features, or timing of disease onset. Using high-depth sequencing, we studied results from one million unrelated individuals referred for genetic testing for almost 1,900 disease-related genes. We observed 5,939 mosaic sequence or intragenic copy number variants distributed across 509 genes in nearly 5,700 individuals, constituting approximately 2% of molecular diagnoses in the cohort. Cancer-related genes had the most mosaic variants and showed age-specific enrichment, in part reflecting clonal hematopoiesis in older individuals. We also observed many mosaic variants in genes related to early-onset conditions. Additional mosaic variants were observed in genes analyzed for reproductive carrier screening or associated with dominant disorders with low penetrance, posing challenges for interpreting their clinical significance. When we controlled for the potential involvement of clonal hematopoiesis, most mosaic variants were enriched in younger individuals and were present at higher levels than in older individuals. Furthermore, individuals with mosaicism showed later disease onset or milder phenotypes than individuals with non-mosaic variants in the same genes. Collectively, the large compendium of variants, disease correlations, and age-specific results identified in this study expand our understanding of the implications of mosaic DNA variation for diagnosis and genetic counseling.
Subject(s)
DNA Copy Number Variations , Mosaicism , DNA Copy Number Variations/genetics , Genetic Testing , Phenotype , High-Throughput Nucleotide Sequencing/methods , MutationABSTRACT
The complexities of gene expression pose challenges for the clinical interpretation of splicing variants. To better understand splicing variants and their contribution to hereditary disease, we evaluated their prevalence, clinical classifications, and associations with diseases, inheritance, and functional characteristics in a 689,321-person clinical cohort and two large public datasets. In the clinical cohort, splicing variants represented 13% of all variants classified as pathogenic (P), likely pathogenic (LP), or variants of uncertain significance (VUSs). Most splicing variants were outside essential splice sites and were classified as VUSs. Among all individuals tested, 5.4% had a splicing VUS. If RNA analysis were to contribute supporting evidence to variant interpretation, we estimated that splicing VUSs would be reclassified in 1.7% of individuals in our cohort. This would result in a clinically significant result (i.e., P/LP) in 0.1% of individuals overall because most reclassifications would change VUSs to likely benign. In ClinVar, splicing VUSs were 4.8% of reported variants and could benefit from RNA analysis. In the Genome Aggregation Database (gnomAD), splicing variants comprised 9.4% of variants in protein-coding genes; most were rare, precluding unambiguous classification as benign. Splicing variants were depleted in genes associated with dominant inheritance and haploinsufficiency, although some genes had rare variants at essential splice sites or had common splicing variants that were most likely compatible with normal gene function. Overall, we describe the contribution of splicing variants to hereditary disease, the potential utility of RNA analysis for reclassifying splicing VUSs, and how natural variation may confound clinical interpretation of splicing variants.
Subject(s)
Alternative Splicing/genetics , Diagnostic Techniques and Procedures , Disease/genetics , RNA/analysis , Sequence Analysis, RNA , Uncertainty , Cohort Studies , Computer Simulation , High-Throughput Nucleotide Sequencing , Humans , RNA/genetics , RNA Splice Sites/geneticsABSTRACT
PURPOSE: Identification of pathogenic germline variants in patients with prostate cancer can help inform treatment selection, screening for secondary malignancies, and cascade testing. Limited real-world data are available on clinician recommendations following germline genetic testing in patients with prostate cancer. MATERIALS AND METHODS: Patient data and clinician recommendations were collected from unselected patients with prostate cancer who underwent germline testing through the PROCLAIM trial. Differences among groups of patients were determined by 2-tailed Fisher's exact test with significance set at P < .05. Logistic regression was performed to assess the influence of test results in clinical decision-making while controlling for time of diagnosis (newly vs previously diagnosed). RESULTS: Among 982 patients, 100 (10%) were positive (>1 pathogenic germline variant), 482 (49%) had uncertain results (>1 variant of uncertain significance), and 400 (41%) were negative. Patients with positive results were significantly more likely than those with negative or uncertain results to receive recommendations for treatment changes (18% vs 1.4%, P < .001), follow-up changes (64% vs 11%, P < .001), and cascade testing (71% vs 5.4%, P < .001). Logistic regression demonstrated that positive and uncertain results were significantly associated with both changes to treatment and follow-up (P < .001) when controlling for new or previous diagnosis. CONCLUSIONS: Germline genetic testing results informed clinical recommendations for patients with prostate cancer, especially in patients with positive results. Higher than anticipated rates of clinical management changes in patients with uncertain results highlight the need for increased genetic education of clinicians treating patients with prostate cancer.
ABSTRACT
The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.
Subject(s)
Artificial Intelligence , Laboratories, Clinical , Humans , Genomics/methods , Genetic Testing , PhenotypeABSTRACT
Secondary genomic findings are increasingly being returned to individuals as opportunistic screening results. A secondary finding offers the chance to identify and mitigate disease that may otherwise be unrecognized in an individual. As a form of screening, secondary findings must be considered differently from sequencing results in a diagnostic setting. For these reasons, clinicians should employ an evaluation and long-term management strategy that accounts for both the increased disease risk associated with a secondary finding and the lower positive predictive value of a screening result compared to an indication-based testing result. Here we describe an approach to the clinical evaluation and management of an individual who presents with a secondary finding. This approach enumerates five domains of evaluation-(1) medical history, (2) physical exam, (3) family history, (4) diagnostic phenotypic testing, and (5) variant correlation-through which a clinician can distinguish a molecular finding from a clinicomolecular diagnosis of genomic disease. With this framework, both geneticists and non-geneticist clinicians can optimize their ability to detect and mitigate genomic disease while avoiding the pitfalls of overdiagnosis. Our goal with this approach is to help clinicians translate secondary findings into meaningful recognition, treatment, and prevention of disease.
Subject(s)
Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/prevention & control , Genomics/methods , Humans , Medical History TakingABSTRACT
BACKGROUND & AIMS: Hereditary factors play a role in the development of colorectal cancer (CRC). Identification of germline predisposition can have implications on treatment and cancer prevention. This study aimed to determine the prevalence of pathogenic germline variants (PGVs) in CRC patients using a universal testing approach, association with clinical outcomes, and the uptake of family variant testing. METHODS: We performed a prospective multisite study of germline sequencing using a more than 80-gene next-generation sequencing platform among CRC patients (not selected for age or family history) receiving care at Mayo Clinic Cancer Centers between April 1, 2018, and March 31, 2020. RESULTS: Of 361 patients, the median age was 57 years (SD, 12.4 y), 43.5% were female, 82% were white, and 38.2% had stage IV disease. PGVs were found in 15.5% (n = 56) of patients, including 44 in moderate- and high-penetrance cancer susceptibility genes. Thirty-four (9.4%) patients had incremental clinically actionable findings that would not have been detected by practice guideline criteria or a CRC-specific gene panel. Only younger age at diagnosis was associated with the presence of PGVs (odds ratio, 1.99; 95% CI, 1.12-3.56). After a median follow-up period of 20.7 months, no differences in overall survival were seen between those with or without a PGV (P = .2). Eleven percent of patients had modifications in their treatment based on genetic findings. Family cascade testing was low (16%). CONCLUSIONS: Universal multigene panel testing in CRC was associated with a modest, but significant, detection of heritable mutations over guideline-based testing. One in 10 patients had changes in their management based on test results. Uptake of cascade family testing was low, which is a concerning observation that warrants further study.
Subject(s)
Adenocarcinoma , Colorectal Neoplasms , Adenocarcinoma/diagnosis , Adenocarcinoma/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Germ Cells , Humans , Middle Aged , Prospective StudiesABSTRACT
MOTIVATION: When rare missense variants are clinically interpreted as to their pathogenicity, most are classified as variants of uncertain significance (VUS). Although functional assays can provide strong evidence for variant classification, such results are generally unavailable. Multiplexed assays of variant effect can generate experimental 'variant effect maps' that score nearly all possible missense variants in selected protein targets for their impact on protein function. However, these efforts have not always prioritized proteins for which variant effect maps would have the greatest impact on clinical variant interpretation. RESULTS: Here, we mined databases of clinically interpreted variants and applied three strategies, each building on the previous, to prioritize genes for systematic functional testing of missense variation. The strategies ranked genes (i) by the number of unique missense VUS that had been reported to ClinVar; (ii) by movability- and reappearance-weighted impact scores, to give extra weight to reappearing, movable VUS and (iii) by difficulty-adjusted impact scores, to account for the more resource-intensive nature of generating variant effect maps for longer genes. Our results could be used to guide systematic functional testing of missense variation toward greater impact on clinical variant interpretation. AVAILABILITY AND IMPLEMENTATION: Source code available at: https://github.com/rothlab/mave-gene-prioritization. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Subject(s)
Mutation, Missense , ProteinsABSTRACT
Hypertrophic cardiomyopathy (HCM) has historically been diagnosed phenotypically. Through genetic testing, identification of a molecular diagnosis (MolDx) is increasingly common but the impact on pediatric patients is unknown. This was a retrospective study of next-generation sequencing data for 602 pediatric patients with a clinician-reported history of HCM. Diagnostic yield was stratified by gene and self-reported race/ethnicity. A MolDx of HCM was identified in 242 (40%) individuals. Sarcomeric genes were the highest yielding, but pathogenic and/or likely pathogenic (P/LP) variants in syndromic genes were found in 36% of individuals with a MolDx, often in patients without documented clinical suspicion for a genetic syndrome. Among all MolDx, 73% were in genes with established clinical management recommendations and 2.9% were in genes that conferred eligibility for clinical trial enrollment. Black patients were the least likely to receive a MolDx. In the current era, genetic testing can impact management of HCM, beyond diagnostics or prognostics, through disease-specific guidelines or clinical trial eligibility. Genetic testing frequently can help identify syndromes in patients for whom syndromes may not be suspected. These findings highlight the importance of pursuing broad genetic testing, independent of suspicion based on phenotype. Lower rates of MolDx in Black patients may contribute to health inequities. Further research is needed evaluating the genetics of HCM in underrepresented/underserved populations. Additionally, research related to the impact of genetic testing on clinical management of other diseases is warranted.
Subject(s)
Cardiomyopathy, Hypertrophic , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/therapy , Child , Genetic Testing , Humans , Mutation , Phenotype , Retrospective Studies , Sarcomeres/geneticsABSTRACT
Mutations in OCRL encoding the inositol polyphosphate 5-phosphatase OCRL (Lowe oculocerebrorenal syndrome protein) disrupt phosphoinositide homeostasis along the endolysosomal pathway causing dysfunction of the cells lining the kidney proximal tubule (PT). The dysfunction can be isolated (Dent disease 2) or associated with congenital cataracts, central hypotonia and intellectual disability (Lowe syndrome). The mechanistic understanding of Dent disease 2/Lowe syndrome remains scarce due to limitations of animal models of OCRL deficiency. Here, we investigate the role of OCRL in Dent disease 2/Lowe syndrome by using OcrlY/- mice, where the lethal deletion of the paralogue Inpp5b was rescued by human INPP5B insertion, and primary culture of proximal tubule cells (mPTCs) derived from OcrlY/- kidneys. The OcrlY/- mice show muscular defects with dysfunctional locomotricity and present massive urinary losses of low-molecular-weight proteins and albumin, caused by selective impairment of receptor-mediated endocytosis in PT cells. The latter was due to accumulation of phosphatidylinositol 4,5-bisphosphate PI(4,5)P2 in endolysosomes, driving local hyper-polymerization of F-actin and impairing trafficking of the endocytic LRP2 receptor, as evidenced in OcrlY/- mPTCs. The OCRL deficiency was also associated with a disruption of the lysosomal dynamic and proteolytic activity. Partial convergence of disease-pathways and renal phenotypes observed in OcrlY/- and Clcn5Y/- mice suggest shared mechanisms in Dent diseases 1 and 2. These studies substantiate the first mouse model of Lowe syndrome and give insights into the role of OCRL in cellular trafficking of multiligand receptors. These insights open new avenues for therapeutic interventions in Lowe syndrome and Dent disease.
Subject(s)
Dent Disease/genetics , Endosomes/metabolism , Kidney Tubules, Proximal/metabolism , Lysosomes/metabolism , Oculocerebrorenal Syndrome/genetics , Phosphoric Monoester Hydrolases/genetics , Actins/metabolism , Animals , Cells, Cultured , Chloride Channels/genetics , Dent Disease/metabolism , Dent Disease/physiopathology , Disease Models, Animal , Endocytosis/genetics , Humans , Kidney/physiopathology , Kidney Tubules, Proximal/physiopathology , Locomotion/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Mutation , Oculocerebrorenal Syndrome/metabolism , Oculocerebrorenal Syndrome/physiopathology , Phosphatidylinositol 4,5-Diphosphate/metabolismABSTRACT
BACKGROUND: The use of proactive genetic screening for disease prevention and early detection is not yet widespread. Professional practice guidelines from the American College of Medical Genetics and Genomics (ACMG) have encouraged reporting pathogenic variants that confer personal risk for actionable monogenic hereditary disorders, but only as secondary findings from exome or genome sequencing. The Centers for Disease Control and Prevention (CDC) recognizes the potential public health impact of three Tier 1 actionable disorders. Here, we report results of a large multi-center cohort study to determine the yield and potential value of screening healthy individuals for variants associated with a broad range of actionable monogenic disorders, outside the context of secondary findings. METHODS: Eligible adults were offered a proactive genetic screening test by health care providers in a variety of clinical settings. The screening panel based on next-generation sequencing contained up to 147 genes associated with monogenic disorders within cancer, cardiovascular, and other important clinical areas. Sequence and intragenic copy number variants classified as pathogenic, likely pathogenic, pathogenic (low penetrance), or increased risk allele were considered clinically significant and reported. Results were analyzed by clinical area and severity/burden of disease using chi-square tests without Yates' correction. RESULTS: Among 10,478 unrelated adults screened, 1619 (15.5%) had results indicating personal risk for an actionable monogenic disorder. In contrast, only 3.1 to 5.2% had clinically reportable variants in genes suggested by the ACMG version 2 secondary findings list to be examined during exome or genome sequencing, and 2% had reportable variants related to CDC Tier 1 conditions. Among patients, 649 (6.2%) were positive for a genotype associated with a disease of high severity/burden, including hereditary cancer syndromes, cardiovascular disorders, or malignant hyperthermia susceptibility. CONCLUSIONS: This is one of the first real-world examples of specialists and primary care providers using genetic screening with a multi-gene panel to identify health risks in their patients. Nearly one in six individuals screened for variants associated with actionable monogenic disorders had clinically significant results. These findings provide a foundation for further studies to assess the role of genetic screening as part of regular medical care.
Subject(s)
Genetic Testing , Physicians , Adult , Cohort Studies , Exome , Genetic Predisposition to Disease , Genomics , HumansABSTRACT
PURPOSE: To evaluate the impact of technically challenging variants on the implementation, validation, and diagnostic yield of commonly used clinical genetic tests. Such variants include large indels, small copy-number variants (CNVs), complex alterations, and variants in low-complexity or segmentally duplicated regions. METHODS: An interlaboratory pilot study used synthetic specimens to assess detection of challenging variant types by various next-generation sequencing (NGS)-based workflows. One well-performing workflow was further validated and used in clinician-ordered testing of more than 450,000 patients. RESULTS: In the interlaboratory study, only 2 of 13 challenging variants were detected by all 10 workflows, and just 3 workflows detected all 13. Limitations were also observed among 11 less-challenging indels. In clinical testing, 21.6% of patients carried one or more pathogenic variants, of which 13.8% (17,561) were classified as technically challenging. These variants were of diverse types, affecting 556 of 1,217 genes across hereditary cancer, cardiovascular, neurological, pediatric, reproductive carrier screening, and other indicated tests. CONCLUSION: The analytic and clinical sensitivity of NGS workflows can vary considerably, particularly for prevalent, technically challenging variants. This can have important implications for the design and validation of tests (by laboratories) and the selection of tests (by clinicians) for a wide range of clinical indications.
Subject(s)
Genetic Testing , High-Throughput Nucleotide Sequencing , Child , DNA Copy Number Variations/genetics , Humans , INDEL Mutation/genetics , Pilot ProjectsABSTRACT
PURPOSE: The genetic architecture of Plakophilin 2 (PKP2) cardiomyopathy can inform our understanding of its variant pathogenicity and protein function. METHODS: We assess the gene-wide and regional association of truncating and missense variants in PKP2 with arrhythmogenic cardiomyopathy (ACM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) specifically. A discovery data set compares genetic testing requisitions to gnomAD. Validation is performed in a rigorously phenotyped definite ARVC cohort and non-ACM individuals in the Geisinger MyCode cohort. RESULTS: The etiologic fraction (EF) of ACM-related diagnoses from truncating variants in PKP2 is significant (0.85 [0.80,0.88], p < 2 × 10-16), increases for ARVC specifically (EF = 0.96 [0.94,0.97], p < 2 × 10-16), and is highest in definite ARVC versus non-ACM individuals (EF = 1.00 [1.00,1.00], p < 2 × 10-16). Regions of missense variation enriched for ACM probands include known functional domains and the C-terminus, which was not previously known to contain a functional domain. No regional enrichment was identified for truncating variants. CONCLUSION: This multicohort evaluation of the genetic architecture of PKP2 demonstrates the specificity of PKP2 truncating variants for ARVC within the ACM disease spectrum. We identify the PKP2 C-terminus as a potential functional domain and find that truncating variants likely cause disease irrespective of transcript position.
Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Plakophilins , Arrhythmogenic Right Ventricular Dysplasia/genetics , Genetic Testing , Humans , Phenotype , Plakophilins/geneticsABSTRACT
PURPOSE: We investigated the frequencies and characteristics of intragenic copy-number variants (CNVs) in a deep sampling of disease genes associated with monogenic disorders. METHODS: Subsets of 1507 genes were tested using next-generation sequencing to simultaneously detect sequence variants and CNVs in >143,000 individuals referred for genetic testing. We analyzed CNVs in gene panels for hereditary cancer syndromes and cardiovascular, neurological, or pediatric disorders. RESULTS: Our analysis identified 2844 intragenic CNVs in 384 clinically tested genes. CNVs were observed in 1.9% of the entire cohort but in a disproportionately high fraction (9.8%) of individuals with a clinically significant result. CNVs accounted for 4.7-35% of pathogenic variants, depending on clinical specialty. Distinct patterns existed among CNVs in terms of copy number, location, exons affected, clinical classification, and genes affected. Separately, analysis of de-identified data for 599 genes unrelated to the clinical phenotype yielded 4054 CNVs. Most of these CNVs were novel rare events, present as duplications, and enriched in genes associated with recessive disorders or lacking loss-of-function mutational mechanisms. CONCLUSION: Universal intragenic CNV analysis adds substantial clinical sensitivity to genetic testing. Clinically relevant CNVs have distinct properties that distinguish them from CNVs contributing to normal variation in human disease genes.
Subject(s)
DNA Copy Number Variations/genetics , Genetic Association Studies , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Comparative Genomic Hybridization , Exons/genetics , Genetic Diseases, Inborn/pathology , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , PhenotypeABSTRACT
On autopsy, a patient is found to have hypertrophic cardiomyopathy. The patient's family pursues genetic testing that shows a "likely pathogenic" variant for the condition on the basis of a study in an original research publication. Given the dominant inheritance of the condition and the risk of sudden cardiac death, other family members are tested for the genetic variant to determine their risk. Several family members test negative and are told that they are not at risk for hypertrophic cardiomyopathy and sudden cardiac death, and those who test positive are told that they need to be regularly monitored for cardiomyopathy on echocardiography. Five years later, during a routine clinic visit of one of the genotype-positive family members, the cardiologist queries a database for current knowledge on the genetic variant and discovers that the variant is now interpreted as "likely benign" by another laboratory that uses more recently derived population-frequency data. A newly available testing panel for additional genes that are implicated in hypertrophic cardiomyopathy is initiated on an affected family member, and a different variant is found that is determined to be pathogenic. Family members are retested, and one member who previously tested negative is now found to be positive for this new variant. An immediate clinical workup detects evidence of cardiomyopathy, and an intracardiac defibrillator is implanted to reduce the risk of sudden cardiac death.
Subject(s)
Databases, Genetic , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome, Human , Genetic Testing , Humans , National Library of Medicine (U.S.) , United StatesABSTRACT
This corrects the article DOI: 10.1038/gim.2017.60.
ABSTRACT
PURPOSE: We evaluated the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) variant pathogenicity guidelines for internal consistency and compatibility with Bayesian statistical reasoning. METHODS: The ACMG/AMP criteria were translated into a naive Bayesian classifier, assuming four levels of evidence and exponentially scaled odds of pathogenicity. We tested this framework with a range of prior probabilities and odds of pathogenicity. RESULTS: We modeled the ACMG/AMP guidelines using biologically plausible assumptions. Most ACMG/AMP combining criteria were compatible. One ACMG/AMP likely pathogenic combination was mathematically equivalent to pathogenic and one ACMG/AMP pathogenic combination was actually likely pathogenic. We modeled combinations that include evidence for and against pathogenicity, showing that our approach scored some combinations as pathogenic or likely pathogenic that ACMG/AMP would designate as variant of uncertain significance (VUS). CONCLUSION: By transforming the ACMG/AMP guidelines into a Bayesian framework, we provide a mathematical foundation for what was a qualitative heuristic. Only 2 of the 18 existing ACMG/AMP evidence combinations were mathematically inconsistent with the overall framework. Mixed combinations of pathogenic and benign evidence could yield a likely pathogenic, likely benign, or VUS result. This quantitative framework validates the approach adopted by the ACMG/AMP, provides opportunities to further refine evidence categories and combining rules, and supports efforts to automate components of variant pathogenicity assessments.
Subject(s)
Bayes Theorem , Computational Biology/methods , Sequence Analysis, DNA/methods , Genetic Testing/standards , Genetic Variation/genetics , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, DNA/standards , SoftwareABSTRACT
BACKGROUND: An estimated 5-10% of breast and ovarian cancers are due to hereditary causes such as hereditary breast and ovarian cancer (HBOC) syndrome. Medicare, the third-party payer that covers 44 million patients in the United States, has implemented a set of clinical criteria to determine coverage for the testing of the BRCA1 and BRCA2 genes. These criteria, developed to identify carriers of BRCA1/2 variants, have not been evaluated in the panel testing era. This study investigated a series of Medicare patients undergoing genetic testing for HBOC to determine the efficacy of genetic testing criteria in identifying patients with hereditary risk. METHODS: This study retrospectively examined de-identified data from a consecutive series of Medicare patients undergoing genetic testing based on personal and family history of breast and gynecologic cancer. Ordering clinicians indicated whether patients did or did not meet established criteria for BRCA1/2 genetic testing. The genetic test results were compared between the group that met the criteria and the group that did not. Patients in families with known pathogenic (P) or likely pathogenic (LP) variants were excluded from the primary analysis. RESULTS: Among 4196 unique Medicare patients, the rate of P/LP variants for the patients who met the criteria for genetic testing was 10.5%, and for those who did not, the rate was 9% (p = 0.26). CONCLUSIONS: The results of this study indicate that a substantial number of Medicare patients with clinically actionable genetic variants are being missed by current testing criteria and suggest the need for significant expansion and simplification of the testing criteria for HBOC.
Subject(s)
Genetic Testing/standards , Hereditary Breast and Ovarian Cancer Syndrome/diagnosis , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Adult , Aged , Aged, 80 and over , Diagnostic Errors , Female , Genes, BRCA1 , Genes, BRCA2 , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Male , Medicare , Middle Aged , Patient Selection , Retrospective Studies , Treatment Outcome , United States , Young AdultABSTRACT
Tuberous sclerosis complex (TSC) is a genetic disorder characterized by seizures and tumor formation in multiple organs, mainly in the brain, skin, kidney, lung and heart. Renal cell carcinoma (RCC) occurs in â¼3% of TSC patients, and typically develops at age <50. Here we describe genetic findings in two TSC patients with multiple renal tumors, each of whom had the germline mutation TSC2 p.R905Q. The first (female) TSC patient had a left followed by a right nephrectomy at ages 24 and 27. Both kidneys showed multifocal TSC-associated papillary RCC (PRCC). Targeted, next-generation sequencing (NGS) analysis of TSC2 in five tumors (four from the left kidney, one from the right) showed loss of heterozygosity in one tumor, and four different TSC2 point mutations (p.E1351*, p.R1032*, p.R1713H, c.4178_4179delCT) in the other four samples. Only one of the 11 other tumors available from this patient had one of the TSC2 second hit mutations identified. Whole-exome analysis of the five tumors identified a very small number of additional mutated genes, with an average of 3.4 nonsilent coding, somatic mutations per tumor, none of which were seen in >1 tumor. The second (male) TSC patient had bilateral partial nephrectomies (both at age 36), with similar findings of multifocal PRCC. NGS analysis of TSC2 in two of these tumors identified a second hit mutation c.2355+1G>T in one sample that was not seen in other tumors. In conclusion, we report the first detailed genetic analysis of RCCs in TSC patients. Molecular studies indicate that tumors developed independently due to various second hit events, suggesting that these patients experienced a 'shower' of second hit mutations in TSC2 during kidney development leading to this severe phenotype.