Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
J Infect Dis ; 224(Supplement_1): S1-S21, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34111271

ABSTRACT

The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/virology , Drug Development , Humans , National Institutes of Health (U.S.) , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , United States , Virus Replication/drug effects
2.
Blood ; 128(1): 93-103, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27073223

ABSTRACT

Dematin is a relatively low abundance actin binding and bundling protein associated with the spectrin-actin junctions of mature erythrocytes. Primary structure of dematin includes a loosely folded core domain and a compact headpiece domain that was originally identified in villin. Dematin's actin binding properties are regulated by phosphorylation of its headpiece domain by cyclic adenosine monophosphate-dependent protein kinase. Here, we used a novel gene disruption strategy to generate the whole body dematin gene knockout mouse model (FLKO). FLKO mice, while born at a normal Mendelian ratio, developed severe anemia and exhibited profound aberrations of erythrocyte morphology and membrane stability. Having no apparent effect on primitive erythropoiesis, FLKO mice show significant enhancement of erythroblast enucleation during definitive erythropoiesis. Using membrane protein analysis, domain mapping, electron microscopy, and dynamic deformability measurements, we investigated the mechanism of membrane instability in FLKO erythrocytes. Although many membrane and cytoskeletal proteins remained at their normal levels, the major peripheral membrane proteins spectrin, adducin, and actin were greatly reduced in FLKO erythrocytes. Our results demonstrate that dematin plays a critical role in maintaining the fundamental properties of the membrane cytoskeleton complex.


Subject(s)
Anemia, Hemolytic , Cytoskeletal Proteins/genetics , Cytoskeleton , Erythrocyte Membrane , Gene Deletion , Anemia, Hemolytic/genetics , Anemia, Hemolytic/metabolism , Anemia, Hemolytic/pathology , Animals , Calmodulin-Binding Proteins/genetics , Calmodulin-Binding Proteins/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeleton/genetics , Cytoskeleton/metabolism , Cytoskeleton/pathology , Erythrocyte Membrane/genetics , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Female , Male , Mice , Mice, Knockout , Spectrin/genetics , Spectrin/metabolism
4.
Thromb Res ; 160: 58-65, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29101791

ABSTRACT

One of the major contributors to sickle cell disease (SCD) pathobiology is the hemolysis of sickle red blood cells (RBCs), which release free hemoglobin and platelet agonists including adenosine 5'-diphosphate (ADP) into the plasma. While platelet activation/aggregation may promote tissue ischemia and pulmonary hypertension in SCD, modulation of sickle platelet dysfunction remains poorly understood. Calpain-1, a ubiquitous calcium-activated cysteine protease expressed in hematopoietic cells, mediates aggregation of platelets in healthy mice. We generated calpain-1 knockout Townes sickle (SSCKO) mice to investigate the role of calpain-1 in steady state and hypoxia/reoxygenation (H/R)-induced sickle platelet activation and aggregation, clot retraction, and pulmonary arterial hypertension. Using multi-electrode aggregometry, which measures platelet adhesion and aggregation in whole blood, we determined that steady state SSCKO mice exhibit significantly impaired PAR4-TRAP-stimulated platelet aggregation as compared to Townes sickle (SS) and humanized control (AA) mice. Interestingly, the H/R injury induced platelet hyperactivity in SS and SSCKO, but not AA mice, and partially rescued the aggregation defect in SSCKO mice. The PAR4-TRAP-stimulated GPIIb-IIIa (αIIbß3) integrin activation was normal in SSCKO platelets suggesting that an alternate mechanism mediates the impaired platelet aggregation in steady state SSCKO mice. Taken together, we provide the first evidence that calpain-1 regulates platelet hyperactivity in sickle mice, and may offer a viable pharmacological target to reduce platelet hyperactivity in SCD.


Subject(s)
Anemia, Sickle Cell/blood , Blood Coagulation/drug effects , Blood Platelets/metabolism , Calpain/blood , Platelet Activation/drug effects , Animals , Disease Models, Animal , Female , Humans , Hypoxia/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL