Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Transfusion ; 61(6): 1894-1907, 2021 06.
Article in English | MEDLINE | ID: mdl-33817808

ABSTRACT

BACKGROUND: Hemolysis releases toxic cell-free hemoglobin (Hb), heme, and iron, which overwhelm their natural scavenging mechanisms during acute or chronic hemolytic conditions. This study describes a novel strategy to purify a protein cocktail containing a comprehensive set of scavenger proteins for potential treatment of hemolysis byproducts. STUDY DESIGN AND METHODS: Tangential flow filtration was used to purify a protein cocktail from Human Cohn Fraction IV (FIV). A series of in vitro assays were performed to characterize composition and biocompatibility. The in vivo potential for hemolysis byproduct mitigation was assessed in a hamster exchange transfusion model using mechanically hemolyzed blood plasma mixed with the protein cocktail or a control colloid (dextran 70 kDa). RESULTS: A basis of 500 g of FIV yielded 62 ± 9 g of a protein mixture at 170 g/L, which bound to approximately 0.6 mM Hb, 1.2 mM heme, and 1.2 mM iron. This protein cocktail was shown to be biocompatible in vitro with red blood cells and platelets and exhibits nonlinear concentration dependence with respect to viscosity and colloidal osmotic pressure. In vivo assessment of the protein cocktail demonstrated higher iron transport to the liver and spleen and less to the kidney and heart with significantly reduced renal and cardiac inflammation markers and lower kidney and hepatic damage compared to a control colloid. DISCUSSION: Taken together, this study provides an effective method for large-scale production of a protein cocktail suitable for comprehensive reduction of hemolysis-induced toxicity.


Subject(s)
Blood Proteins/therapeutic use , Heme/isolation & purification , Hemoglobins/isolation & purification , Hemolysis/drug effects , Iron/isolation & purification , Animals , Blood Proteins/chemistry , Humans , Male , Mesocricetus , Treatment Outcome
2.
Biomed Pharmacother ; 174: 116569, 2024 May.
Article in English | MEDLINE | ID: mdl-38603886

ABSTRACT

Alpha-alpha diaspirin-crosslinked human hemoglobin (DCLHb or ααHb) was a promising early generation red blood cell (RBC) substitute. The DCLHb was developed through a collaborative effort between the United States Army and Baxter Healthcare. The core design feature underlying its development was chemical stabilization of the tetrameric structure of hemoglobin (Hb) to prevent Hb intravascular dimerization and extravasation. DCLHb was developed to resuscitate warfighters on the battlefield, who suffered from life-threatening blood loss. However, extensive research revealed toxic side effects associated with the use of DCLHb that contributed to high mortality rates in clinical trials. This study explores whether scavenging Hb and heme via the apohemoglobin-haptoglobin (apoHb-Hp) complex can reduce DCLHb associated toxicity. Awake Golden Syrian hamsters were equipped with a window chamber model to characterize the microcirculation. Each group was first infused with either Lactated Ringer's or apoHb-Hp followed by a hypovolemic infusion of 10% of the animal's blood volume of DCLHb. Our results indicated that animals pretreated with apoHb-Hb exhibited improved microhemodynamics vs the group pretreated with Lactated Ringer's. While systemic acute inflammation was observed regardless of the treatment group, apoHb-Hp pretreatment lessened those effects with a marked reduction in IL-6 levels in the heart and kidneys compared to the control group. Taken together, this study demonstrated that utilizing a Hb and heme scavenger protein complex significantly reduces the microvasculature effects of ααHb, paving the way for improved HBOC formulations. Future apoHb-Hp dose optimization studies may identify a dose that can completely neutralize DCLHb toxicity.


Subject(s)
Haptoglobins , Hemoglobins , Animals , Hemoglobins/pharmacology , Hemoglobins/metabolism , Humans , Haptoglobins/metabolism , Male , Mesocricetus , Apoproteins/chemistry , Apoproteins/pharmacology , Blood Substitutes/pharmacology , Blood Substitutes/chemistry , Cross-Linking Reagents/chemistry , Cricetinae
3.
ACS Appl Bio Mater ; 3(7): 4495-4506, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-35025448

ABSTRACT

Photodynamic therapy (PDT) has been shown to effectively treat cancer by producing cytotoxic reactive oxygen species via excitation of photosensitizer (PS). However, most PS lack tumor cell specificity, possess poor aqueous solubility, and cause systemic photosensitivity. Removing heme from hemoglobin (Hb) yields an apoprotein called apohemoglobin (apoHb) with a vacant heme-binding pocket that can efficiently bind to hydrophobic molecules such as PS. In this study, the PS aluminum phthalocyanine (Al-PC) was bound to the apoHb-haptoglobin (apoHb-Hp) protein complex, forming an apoHb-Al-PC-Hp (APH) complex. The reaction of Al-PC with apoHb prevented Al-PC aggregation in aqueous solution, retaining the characteristic spectral properties of Al-PC. The stability of apoHb-Al-PC was enhanced via binding with Hp to form the APH complex, which allowed for repeated Al-PC additions to maximize Al-PC encapsulation. The final APH product had 65% of the active heme-binding sites of apoHb bound to Al-PC and a hydrodynamic diameter of 18 nm that could potentially reduce extravasation of the molecule through the blood vessel wall and prevent kidney accumulation of Al-PC. Furthermore, more than 80% of APH's absorbance spectra were retained when incubated for over a day in plasma at 37 °C. Heme displacement assays confirmed that Al-PC was bound within the heme-binding pocket of apoHb and binding specificity was demonstrated by ineffective Al-PC binding to human serum albumin, Hp, or Hb. In vitro studies confirmed enhanced singlet oxygen generation of APH over Al-PC in aqueous solution and demonstrated effective PDT on human and murine cancer cells. Taken together, this study provides a method to produce APH for enhanced PDT via improved PS solubility and potential targeted therapy via uptake by CD163+ macrophages and monocytes in the tumor (i.e., tumor-associated macrophages). Moreover, this scalable method for site-specific encapsulation of Al-PC into apoHb and apoHb-Hp may be used for other hydrophobic therapeutic agents.

SELECTION OF CITATIONS
SEARCH DETAIL