ABSTRACT
BACKGROUND: WHO, as requested by its member states, launched the Expanded Programme on Immunization (EPI) in 1974 to make life-saving vaccines available to all globally. To mark the 50-year anniversary of EPI, we sought to quantify the public health impact of vaccination globally since the programme's inception. METHODS: In this modelling study, we used a suite of mathematical and statistical models to estimate the global and regional public health impact of 50 years of vaccination against 14 pathogens in EPI. For the modelled pathogens, we considered coverage of all routine and supplementary vaccines delivered since 1974 and estimated the mortality and morbidity averted for each age cohort relative to a hypothetical scenario of no historical vaccination. We then used these modelled outcomes to estimate the contribution of vaccination to globally declining infant and child mortality rates over this period. FINDINGS: Since 1974, vaccination has averted 154 million deaths, including 146 million among children younger than 5 years of whom 101 million were infants younger than 1 year. For every death averted, 66 years of full health were gained on average, translating to 10·2 billion years of full health gained. We estimate that vaccination has accounted for 40% of the observed decline in global infant mortality, 52% in the African region. In 2024, a child younger than 10 years is 40% more likely to survive to their next birthday relative to a hypothetical scenario of no historical vaccination. Increased survival probability is observed even well into late adulthood. INTERPRETATION: Since 1974 substantial gains in childhood survival have occurred in every global region. We estimate that EPI has provided the single greatest contribution to improved infant survival over the past 50 years. In the context of strengthening primary health care, our results show that equitable universal access to immunisation remains crucial to sustain health gains and continue to save future lives from preventable infectious mortality. FUNDING: WHO.
Subject(s)
Child Mortality , Immunization Programs , Vaccination , Humans , Infant , Child, Preschool , Vaccination/statistics & numerical data , Child Mortality/trends , Infant Mortality/trends , Child , Global Health , Infant, Newborn , Adult , Adolescent , History, 20th Century , Middle Aged , Models, Statistical , Public Health , Young AdultABSTRACT
Vaccination against infectious diseases has changed the future of the human species, saving millions of lives every year, both children and adults, and providing major benefits to society as a whole. Here we show, however, that national and sub-national coverage of vaccination varies greatly and major unmet needs persist. Although scientific progress opens exciting perspectives in terms of new vaccines, the pathway from discovery to sustainable implementation can be long and difficult, from the financing, development and licensing to programme implementation and public acceptance. Immunization is one of the best investments in health and should remain a priority for research, industry, public health and society.
Subject(s)
Drug Development/economics , Vaccination/trends , Vaccines/immunology , Vaccines/supply & distribution , Animals , Humans , Mortality , Philippines/epidemiology , Social Change , Vaccination/economics , Vaccines/economicsABSTRACT
BACKGROUND: Knowing whether COVID-19 vaccine effectiveness wanes is crucial for informing vaccine policy, such as the need for and timing of booster doses. We aimed to systematically review the evidence for the duration of protection of COVID-19 vaccines against various clinical outcomes, and to assess changes in the rates of breakthrough infection caused by the delta variant with increasing time since vaccination. METHODS: This study was designed as a systematic review and meta-regression. We did a systematic review of preprint and peer-reviewed published article databases from June 17, 2021, to Dec 2, 2021. Randomised controlled trials of COVID-19 vaccine efficacy and observational studies of COVID-19 vaccine effectiveness were eligible. Studies with vaccine efficacy or effectiveness estimates at discrete time intervals of people who had received full vaccination and that met predefined screening criteria underwent full-text review. We used random-effects meta-regression to estimate the average change in vaccine efficacy or effectiveness 1-6 months after full vaccination. FINDINGS: Of 13 744 studies screened, 310 underwent full-text review, and 18 studies were included (all studies were carried out before the omicron variant began to circulate widely). Risk of bias, established using the risk of bias 2 tool for randomised controlled trials or the risk of bias in non-randomised studies of interventions tool was low for three studies, moderate for eight studies, and serious for seven studies. We included 78 vaccine-specific vaccine efficacy or effectiveness evaluations (Pfizer-BioNTech-Comirnaty, n=38; Moderna-mRNA-1273, n=23; Janssen-Ad26.COV2.S, n=9; and AstraZeneca-Vaxzevria, n=8). On average, vaccine efficacy or effectiveness against SARS-CoV-2 infection decreased from 1 month to 6 months after full vaccination by 21·0 percentage points (95% CI 13·9-29·8) among people of all ages and 20·7 percentage points (10·2-36·6) among older people (as defined by each study, who were at least 50 years old). For symptomatic COVID-19 disease, vaccine efficacy or effectiveness decreased by 24·9 percentage points (95% CI 13·4-41·6) in people of all ages and 32·0 percentage points (11·0-69·0) in older people. For severe COVID-19 disease, vaccine efficacy or effectiveness decreased by 10·0 percentage points (95% CI 6·1-15·4) in people of all ages and 9·5 percentage points (5·7-14·6) in older people. Most (81%) vaccine efficacy or effectiveness estimates against severe disease remained greater than 70% over time. INTERPRETATION: COVID-19 vaccine efficacy or effectiveness against severe disease remained high, although it did decrease somewhat by 6 months after full vaccination. By contrast, vaccine efficacy or effectiveness against infection and symptomatic disease decreased approximately 20-30 percentage points by 6 months. The decrease in vaccine efficacy or effectiveness is likely caused by, at least in part, waning immunity, although an effect of bias cannot be ruled out. Evaluating vaccine efficacy or effectiveness beyond 6 months will be crucial for updating COVID-19 vaccine policy. FUNDING: Coalition for Epidemic Preparedness Innovations.
Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunization Schedule , Immunization, Secondary , Ad26COVS1/therapeutic use , BNT162 Vaccine/therapeutic use , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Time FactorsABSTRACT
Predicting how pathogen populations will change over time is challenging. Such has been the case with Streptococcus pneumoniae, an important human pathogen, and the pneumococcal conjugate vaccines (PCVs), which target only a fraction of the strains in the population. Here, we use the frequencies of accessory genes to predict changes in the pneumococcal population after vaccination, hypothesizing that these frequencies reflect negative frequency-dependent selection (NFDS) on the gene products. We find that the standardized predicted fitness of a strain, estimated by an NFDS-based model at the time the vaccine is introduced, enables us to predict whether the strain increases or decreases in prevalence following vaccination. Further, we are able to forecast the equilibrium post-vaccine population composition and assess the invasion capacity of emerging lineages. Overall, we provide a method for predicting the impact of an intervention on pneumococcal populations with potential application to other bacterial pathogens in which NFDS is a driving force.
Subject(s)
Directed Molecular Evolution , Streptococcus pneumoniae/physiology , Computer Simulation , Models, Biological , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunologyABSTRACT
Immunization is among the most cost-effective public health interventions available and is estimated to have averted at least 37 million deaths between 2000 and 2019. Since the establishment of the Expanded Programme on Immunization in 1974, global vaccination coverage increased and the coverage gap between rich and poor countries decreased. Creation of Gavi, the Vaccine Alliance, in 2000 allowed the poorest countries in the world to benefit from new, life-saving vaccines and expand the breadth of protection against an increasing number of vaccine-preventable diseases. Despite this progress, inequities in access to and uptake of vaccines persist. Opportunities to realize the full potential of vaccines are within reach but require focused, tailored and committed action by Governments and immunization stakeholders. The Immunization Agenda 2030 provides a framework for action during the next decade to attain a world where everyone, everywhere, at every age fully benefits from vaccines for good health and well-being.
Subject(s)
Immunization Programs , Immunization , Vaccine-Preventable Diseases , Vaccines , Humans , Immunization Programs/trends , Vaccination , Vaccination CoverageABSTRACT
BACKGROUND: An improved understanding of childhood pneumonia etiology is required to inform prevention and treatment strategies. Lung aspiration is the gold standard specimen for pneumonia diagnostics. We report findings from analyses of lung and pleural aspirates collected in the Pneumonia Etiology Research for Child Health (PERCH) study. METHODS: The PERCH study enrolled children aged 1-59 months hospitalized with World Health Organization-defined severe or very severe pneumonia in 7 countries in Africa and Asia. Percutaneous transthoracic lung aspiration (LA) and pleural fluid (PF) aspiration was performed on a sample of pneumonia cases with radiological consolidation and/or PF in 4 countries. Venous blood and nasopharyngeal/oropharyngeal swabs were collected from all cases. Multiplex quantitative polymerase chain reaction (PCR) and routine microbiologic culture were applied to clinical specimens. RESULTS: Of 44 LAs performed within 3 days of admission on 622 eligible cases, 13 (30%) had a pathogen identified by either culture (5/44) or by PCR (11/29). A pathogen was identified in 12/14 (86%) PF specimens tested by either culture (9/14) or PCR (9/11). Bacterial pathogens were identified more frequently than viruses. All but 1 of the cases with a virus identified were coinfected with bacterial pathogens. Streptococcus pneumoniae (9/44 [20%]) and Staphylococcus aureus (7/14 [50%]) were the predominant pathogens identified in LA and PF, respectively. CONCLUSIONS: Bacterial pathogens predominated in this selected subgroup of PERCH participants drawn from those with radiological consolidation or PF, with S. pneumoniae and S. aureus the leading pathogens identified.
Subject(s)
Perches , Pneumonia , Animals , Bayes Theorem , Case-Control Studies , Child , Child Health , Child, Preschool , Developing Countries , Humans , Infant , Lung , Patient Acuity , Pneumonia/diagnosis , Pneumonia/etiology , Pneumonia/prevention & control , Risk Factors , Staphylococcus aureusABSTRACT
BACKGROUND: Deficits in child growth are associated with poor cognitive outcomes and an increased risk for infection and mortality globally. One hundred forty million people are chronically exposed to arsenic from contaminated drinking water worldwide. While arsenic exposure has been associated with cognitive developmental delays in children, there is limited research on the association between arsenic exposure and growth deficits in young children. PURPOSE: The objective of this study was to assess the association between chronic arsenic exposure and deficits in growth among children under 5 years in a rural setting in Bangladesh. METHODS: Urinary arsenic measurements were collected from 465 children between the ages of 28 days-59 months in rural Matlab, Bangladesh, and analyzed by graphite furnace atomic absorption. Height and weight measurements were collected from children according to World Health Organization child growth standards. A z-score cutoff2 standard deviations below the mean was used to define stunting (height-for-age z-score), underweight (weight-for-age z-score), and wasting (weight-for-height z-score). RESULTS: Children under 5 years with urinary arsenic concentrations in the third tertile (greater than 31 µg per liter (µg/L)) had a two times higher odds of being underweight after adjustment for age, creatinine, paternal education, breastfeeding, number of individuals using the same sleeping room, and physician-diagnosed pneumonia (Odds Ratio (OR): 2.29 (95% Confidence Interval (CI): 1.16, 4.52)). Children under 2 years of age had a two times higher odds of being wasted after adjustment for age, creatinine, paternal education, breastfeeding, number of individuals using the same sleeping room, and physician-diagnosed pneumonia (OR: 2.85 (95% CI: 1.18, 6.89)). CONCLUSIONS: These findings suggest that arsenic exposure is associated with an increased odds of being wasted and underweight among young children in rural Bangladesh.
Subject(s)
Arsenic , Drinking Water , Arsenic/analysis , Bangladesh/epidemiology , Child , Child, Preschool , Drinking Water/analysis , Female , Humans , Infant , Rural Population , Thinness/epidemiologyABSTRACT
BACKGROUND: In 2015, pneumonia remained the leading cause of mortality in children aged 1-59 months. METHODS: Data from 1802 human immunodeficiency virus (HIV)-negative children aged 1-59 months enrolled in the Pneumonia Etiology Research for Child Health (PERCH) study with severe or very severe pneumonia during 2011-2014 were used to build a parsimonious multivariable model predicting mortality using backwards stepwise logistic regression. The PERCH severity score, derived from model coefficients, was validated on a second, temporally discrete dataset of a further 1819 cases and compared to other available scores using the C statistic. RESULTS: Predictors of mortality, across 7 low- and middle-income countries, were age <1 year, female sex, ≥3 days of illness prior to presentation to hospital, low weight for height, unresponsiveness, deep breathing, hypoxemia, grunting, and the absence of cough. The model discriminated well between those who died and those who survived (C statistic = 0.84), but the predictive capacity of the PERCH 5-stratum score derived from the coefficients was moderate (C statistic = 0.76). The performance of the Respiratory Index of Severity in Children score was similar (C statistic = 0.76). The number of World Health Organization (WHO) danger signs demonstrated the highest discrimination (C statistic = 0.82; 1.5% died if no danger signs, 10% if 1 danger sign, and 33% if ≥2 danger signs). CONCLUSIONS: The PERCH severity score could be used to interpret geographic variations in pneumonia mortality and etiology. The number of WHO danger signs on presentation to hospital could be the most useful of the currently available tools to aid clinical management of pneumonia.
Subject(s)
Developing Countries , Pneumonia , Child , Child, Preschool , Female , HIV , Hospitals , Humans , Infant , Pneumonia/epidemiology , Severity of Illness IndexABSTRACT
In the United States, the introduction of the heptavalent pneumococcal conjugate vaccine (PCV) largely eliminated vaccine serotypes (VT); non-vaccine serotypes (NVT) subsequently increased in carriage and disease. Vaccination also disrupts the composition of the pneumococcal pangenome, which includes mobile genetic elements and polymorphic non-capsular antigens important for virulence, transmission, and pneumococcal ecology. Antigenic proteins are of interest for future vaccines; yet, little is known about how the they are affected by PCV use. To investigate the evolutionary impact of vaccination, we assessed recombination, evolution, and pathogen demographic history of 937 pneumococci collected from 1998-2012 among Navajo and White Mountain Apache Native American communities. We analyzed changes in the pneumococcal pangenome, focusing on metabolic loci and 19 polymorphic protein antigens. We found the impact of PCV on the pneumococcal population could be observed in reduced diversity, a smaller pangenome, and changing frequencies of accessory clusters of orthologous groups (COGs). Post-PCV7, diversity rebounded through clonal expansion of NVT lineages and inferred in-migration of two previously unobserved lineages. Accessory COGs frequencies trended toward pre-PCV7 values with increasing time since vaccine introduction. Contemporary frequencies of protein antigen variants are better predicted by pre-PCV7 values (1998-2000) than the preceding period (2006-2008), suggesting balancing selection may have acted in maintaining variant frequencies in this population. Overall, we present the largest genomic analysis of pneumococcal carriage in the United States to date, which includes a snapshot of a true vaccine-naïve community prior to the introduction of PCV7. These data improve our understanding of pneumococcal evolution and emphasize the need to consider pangenome composition when inferring the impact of vaccination and developing future protein-based pneumococcal vaccines.
Subject(s)
Genome, Bacterial , Heptavalent Pneumococcal Conjugate Vaccine/administration & dosage , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Serogroup , Streptococcus pneumoniae/immunology , Adolescent , Adult , Aged , Child , Genetics, Population , Humans , Middle Aged , Nasopharynx/microbiology , Phylogeny , Pneumococcal Infections/epidemiology , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Population Dynamics , Prospective Studies , Serotyping , Streptococcus pneumoniae/genetics , Vaccination , Young AdultABSTRACT
Streptococcus pneumoniae serotype 3 remains a significant cause of morbidity and mortality worldwide, despite inclusion in the 13-valent pneumococcal conjugate vaccine (PCV13). Serotype 3 increased in carriage since the implementation of PCV13 in the USA, while invasive disease rates remain unchanged. We investigated the persistence of serotype 3 in carriage and disease, through genomic analyses of a global sample of 301 serotype 3 isolates of the Netherlands3-31 (PMEN31) clone CC180, combined with associated patient data and PCV utilization among countries of isolate collection. We assessed phenotypic variation between dominant clades in capsule charge (zeta potential), capsular polysaccharide shedding, and susceptibility to opsonophagocytic killing, which have previously been associated with carriage duration, invasiveness, and vaccine escape. We identified a recent shift in the CC180 population attributed to a lineage termed Clade II, which was estimated by Bayesian coalescent analysis to have first appeared in 1968 [95% HPD: 1939-1989] and increased in prevalence and effective population size thereafter. Clade II isolates are divergent from the pre-PCV13 serotype 3 population in non-capsular antigenic composition, competence, and antibiotic susceptibility, the last of which resulting from the acquisition of a Tn916-like conjugative transposon. Differences in recombination rates among clades correlated with variations in the ATP-binding subunit of Clp protease, as well as amino acid substitutions in the comCDE operon. Opsonophagocytic killing assays elucidated the low observed efficacy of PCV13 against serotype 3. Variation in PCV13 use among sampled countries was not independently correlated with the CC180 population shift; therefore, genotypic and phenotypic differences in protein antigens and, in particular, antibiotic resistance may have contributed to the increase of Clade II. Our analysis emphasizes the need for routine, representative sampling of isolates from disperse geographic regions, including historically under-sampled areas. We also highlight the value of genomics in resolving antigenic and epidemiological variations within a serotype, which may have implications for future vaccine development.
Subject(s)
Pneumococcal Infections/immunology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Bayes Theorem , Carrier State/epidemiology , Evolution, Molecular , Genetics, Population/methods , Humans , Phylogeny , Pneumococcal Infections/transmission , Pneumococcal Vaccines/immunology , Population Dynamics , Prevalence , Serogroup , Serotyping/methods , Streptococcus pneumoniae/pathogenicity , Vaccines, Conjugate , Whole Genome Sequencing/methodsABSTRACT
Group A Streptococcus (GAS) infections result in a considerable underappreciated burden of acute and chronic disease globally. A 2018 World Health Assembly resolution calls for better control and prevention. Providing guidance on global health research needs is an important World Health Organization (WHO) activity, influencing prioritization of investments. Here, the role, status, and directions in GAS vaccines research are discussed. WHO preferred product characteristics and a research and development technology roadmap, briefly presented, offer an actionable framework for vaccine development to regulatory and policy decision making, availability, and use. GAS vaccines should be considered for global prevention of the range of clinical manifestations and associated antibiotic use. Impediments related to antigen diversity, safety concerns, and the difficulty to establish vaccine efficacy against rheumatic heart disease are discussed. Demonstration of vaccine efficacy against pharyngitis and skin infections constitutes a key near-term strategic goal. Investments and collaborative partnerships to diversify and advance vaccine candidates are needed.
Subject(s)
Biomedical Research , Global Health , Streptococcal Infections/prevention & control , Streptococcal Vaccines , World Health Organization , Cost of Illness , Humans , Policy Making , Streptococcus pyogenes/immunologyABSTRACT
Johan Vekemans, Katherine O'Brien, and Jeremy Farrar discuss recent breakthroughs in the search for a highly effective tuberculosis vaccine.
Subject(s)
Drug Discovery/trends , Infection Control/trends , Mycobacterium tuberculosis/immunology , Tuberculosis Vaccines , Tuberculosis/prevention & control , Humans , Immunization, Secondary , Infection Control/methods , Latent Tuberculosis/immunology , Latent Tuberculosis/pathology , Latent Tuberculosis/therapy , Mycobacterium bovis/immunology , Tuberculosis/immunology , Tuberculosis Vaccines/chemical synthesis , Tuberculosis Vaccines/therapeutic useABSTRACT
Household surveys remain an essential method for estimating vaccine coverage in developing countries. However, the resulting estimates have inevitable and currently unmeasurable information biases due to inaccuracies in recall, low retention of home-based records (HBRs; i.e., vaccination cards), and inaccurate recording of vaccination on HBRs. We developed an innovative method with which to overcome these biases, enhance the validity of survey results, and estimate true vaccine coverage using nested serological assessments of immune markers. We enrolled children aged 12-23 months in vaccine coverage surveys in Karachi, Pakistan, from January to December 2016. Vaccination history was collected through verbal recall by the caregiver and, when available, by HBR. One-third of survey participants were randomly enrolled for serological testing for anti-measles virus immunoglobulin G antibody. We applied Bayesian latent class models to evaluate the misalignment among measles vaccination histories derived by recall, HBRs, and measles serology and estimated true measles vaccine coverage. The model-based estimate of true measles vaccine coverage was 61.1% (95% credible interval: 53.5, 69.4) among all survey participants. The standard estimate of 73.2% (95% confidence interval: 71.3, 75.1) defined by positive recall or HBR documentation substantially overestimated the vaccine coverage. Researchers can correct for information biases using serological assessments in a subsample of survey participants and latent class analytical approaches.
Subject(s)
Vaccination Coverage/statistics & numerical data , Antibodies, Viral/blood , Antibodies, Viral/immunology , Bayes Theorem , Bias , Biomarkers/blood , Female , Health Surveys/methods , Humans , Infant , Male , Measles/immunology , Measles/prevention & control , Pakistan , Vaccination Coverage/methodsABSTRACT
Culture-based methods for detecting Streptococcus pneumoniae in the nasopharynx lack sensitivity. In this study, we aimed to compare the performance of culture and molecular methods in detecting pneumococcus in the nasopharynx of healthy individuals and to evaluate the associations of age and colonization density with detection. Between 2010 and 2012, nasopharyngeal specimens were collected from healthy individuals living on Navajo Nation and White Mountain Apache Tribal lands in the United States. Pneumococci were detected by means of broth-enrichment culture and autolysin-encoding gene (lytA) quantitative polymerase chain reaction (qPCR). Among 982 persons evaluated (median age, 18.7 years; 47% male), 35% were culture-positive and an additional 27% were qPCR-positive. Agreement between culture and qPCR was 70.9% but was higher among children (age <18 years) (75.9%-84.4%) than among adults (age ≥18 years) (61.0%-74.6%). The mean density of colonization was lower for culture-negative samples (3.14 log10 copies/mL) than for culture-positive samples (5.02 log10 copies/mL), overall and for all age groups. The percent culture-positive increased with increasing density, exceeding 80% at densities of ≥10,000 copies/mL. Mean colonization density decreased with age. Use of qPCR improved detection of pneumococcus in the nasopharynx of healthy individuals. This finding was most notable among adults, probably because of improved detection of low-density colonization.
Subject(s)
Culture Techniques , Nasopharynx/microbiology , Streptococcus pneumoniae/isolation & purification , Adolescent , Adult , Age Factors , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Male , Middle Aged , Prospective Studies , Young AdultABSTRACT
Background: Pneumococcal conjugate vaccines (PCVs) provide direct protection against disease in those vaccinated, and interrupt transmission through the prevention of nasopharyngeal (NP) carriage. Methods: We analyzed immunogenicity data from 5224 infants who received PCV in prime-boost schedules. We defined any increase in antibody between the 1-month postpriming visit and the booster dose as an indication of NP carriage ("seroincidence"). We calculated antibody concentrations using receiver operating characteristic curves, and used generalized additive models to compute their protective efficacy against seroincidence. To support seroincidence as a marker of carriage, we compared seroincidence in a randomized immunogenicity trial in Nepal with the serotype-specific prevalence of carriage in the same community. Results: In Nepalese infants, seroincidence of carriage closely correlated with serotype-specific carriage prevalence in the community. In the larger data set, antibody concentrations associated with seroincidence were lowest for serotypes 6B and 23F (0.50 µg/mL and 0.63 µg/mL, respectively), and highest for serotypes 19F and 14 (2.54 µg/mL and 2.48 µg/mL, respectively). The protective efficacy of antibody at these levels was 62% and 74% for serotypes 6B and 23F, and 87% and 84% for serotypes 19F and 14. Protective correlates were on average 2.15 times higher in low/lower middle-income countries than in high/upper middle-income countries (geometric mean ratio, 2.15 [95% confidence interval, 1.46-3.17]; P = .0024). Conclusions: Antibody concentrations associated with protection vary between serotypes. Higher antibody concentrations are required for protection in low-income countries. These findings are important for global vaccination policy, to interrupt transmission by protecting against carriage.
Subject(s)
Antibodies, Bacterial/immunology , Carrier State/microbiology , Nasopharynx/microbiology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Streptococcus pneumoniae/immunology , Carrier State/epidemiology , Female , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Immunoglobulin G/blood , Infant , Internationality , Male , Nepal/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Pneumococcal Vaccines/administration & dosage , Prevalence , Serogroup , Vaccines, Conjugate/immunologyABSTRACT
BACKGROUND: We have previously estimated that respiratory syncytial virus (RSV) was associated with 22% of all episodes of (severe) acute lower respiratory infection (ALRI) resulting in 55â000 to 199â000 deaths in children younger than 5 years in 2005. In the past 5 years, major research activity on RSV has yielded substantial new data from developing countries. With a considerably expanded dataset from a large international collaboration, we aimed to estimate the global incidence, hospital admission rate, and mortality from RSV-ALRI episodes in young children in 2015. METHODS: We estimated the incidence and hospital admission rate of RSV-associated ALRI (RSV-ALRI) in children younger than 5 years stratified by age and World Bank income regions from a systematic review of studies published between Jan 1, 1995, and Dec 31, 2016, and unpublished data from 76 high quality population-based studies. We estimated the RSV-ALRI incidence for 132 developing countries using a risk factor-based model and 2015 population estimates. We estimated the in-hospital RSV-ALRI mortality by combining in-hospital case fatality ratios with hospital admission estimates from hospital-based (published and unpublished) studies. We also estimated overall RSV-ALRI mortality by identifying studies reporting monthly data for ALRI mortality in the community and RSV activity. FINDINGS: We estimated that globally in 2015, 33·1 million (uncertainty range [UR] 21·6-50·3) episodes of RSV-ALRI, resulted in about 3·2 million (2·7-3·8) hospital admissions, and 59â600 (48â000-74â500) in-hospital deaths in children younger than 5 years. In children younger than 6 months, 1·4 million (UR 1·2-1·7) hospital admissions, and 27â300 (UR 20â700-36â200) in-hospital deaths were due to RSV-ALRI. We also estimated that the overall RSV-ALRI mortality could be as high as 118â200 (UR 94â600-149â400). Incidence and mortality varied substantially from year to year in any given population. INTERPRETATION: Globally, RSV is a common cause of childhood ALRI and a major cause of hospital admissions in young children, resulting in a substantial burden on health-care services. About 45% of hospital admissions and in-hospital deaths due to RSV-ALRI occur in children younger than 6 months. An effective maternal RSV vaccine or monoclonal antibody could have a substantial effect on disease burden in this age group. FUNDING: The Bill & Melinda Gates Foundation.
Subject(s)
Hospitalization/statistics & numerical data , Models, Statistical , Respiratory Syncytial Viruses/isolation & purification , Respiratory Tract Infections/epidemiology , Child, Preschool , Developing Countries , Global Health , Hospital Mortality , Humans , Incidence , Infant , Infant, Newborn , Risk FactorsABSTRACT
The Navajo Nation includes approximately 250,000 American Indians living in a remote high desert environment with limited access to public water systems. We conducted a pilot case-control study to assess associations between acute gastroenteritis (AGE) and water availability, use patterns, and quality. Case patients with AGE and non-AGE controls who presented for care to two Indian Health Service hospitals were recruited. Data on demographics and water use practices were collected using a standard questionnaire. Household drinking water was tested for presence of pathogens, coliforms, and residual chlorine. Sixty-one subjects (32 cases and 29 controls) participated in the study. Cases and controls were not significantly different with respect to water sources, quality, or patterns of use. Twenty-one percent (n = 12) of study participants resided in dwellings not connected to a community water system. Eleven percent (n = 7) of subjects reported drinking hauled water from unregulated sources. Coliform bacteria were present in 44% (n = 27) of household water samples, and 68% (n = 40) of samples contained residual chlorine concentrations of <0.2 mg/L. This study highlights issues with water availability, quality, and use patterns within the Navajo Nation, including sub-optimal access to community water systems, and use of water hauled from unregulated sources.
Subject(s)
Gastroenteritis/epidemiology , Water Quality/standards , Water Supply/statistics & numerical data , Case-Control Studies , Gastroenteritis/prevention & control , Humans , Indians, North American/statistics & numerical dataABSTRACT
Pneumonia kills more children each year worldwide than any other disease. Nonetheless, accurately determining the causes of childhood pneumonia has remained elusive. Over the past century, the focus of pneumonia etiology research has shifted from studies of lung aspirates and postmortem specimens intent on identifying pneumococcal disease to studies of multiple specimen types distant from the lung that are tested for multiple pathogens. Some major challenges facing modern pneumonia etiology studies include the use of nonspecific and variable case definitions, poor access to pathologic lung tissue and to specimens from fatal cases, poor diagnostic accuracy of assays (especially when testing nonpulmonary specimens), and the interpretation of results when multiple pathogens are detected in a given individual. The future of childhood pneumonia etiology research will likely require integrating data from complementary approaches, including applications of advanced molecular diagnostics and vaccine probe studies, as well as a renewed emphasis on lung aspirates from radiologically confirmed pneumonia and postmortem examinations.